English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1818-1836 前一篇   后一篇

• 综述与评论 •

导电聚合物/贵金属复合材料应用于C1小分子电催化氧化

任芳芳1, 蒋丰兴1,2, 周卫强1,2, 杜玉扣*1, 徐景坤*2   

  1. 1. 苏州大学材料与化学化工学部 苏州 215123;
    2. 江西科技师范大学有机功能分子重点实验室 南昌 330013
  • 收稿日期:2012-01-01 修回日期:2012-04-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 杜玉扣, 徐景坤 E-mail:duyk@suda.edu.cn; xujingkun@tsinghua.org.cn
  • 基金资助:

    国家自然科学基金项目(No. 51073114, 20933007)和江苏省高校优势学科建设工程(PAPD)项目资助

Application of Conducting Polymers/Metal Composites for C1 Molecules Electrooxidation

Ren Fangfang1, Jiang Fengxing1,2, Zhou Weiqiang1,2, Du Yukou1, Xu Jingkun2   

  1. 1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China;
    2. Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
  • Received:2012-01-01 Revised:2012-04-01 Online:2012-09-24 Published:2012-09-27
低温燃料电池作为一种新型的能源装置,具有能量转换效率高、工作温度低、无污染、液体燃料处理简单、启动迅速等诸多优点,已成为世界各国竞相研究的热点。有机小分子的高效电催化氧化直接关系到低温燃料电池的发展和应用。低温燃料电池的电极材料主要是碳/贵金属复合材料,碳载体易导致贵金属粒子团聚、且易发生电氧化腐蚀等缺点降低了贵金属的利用率和电池的使用寿命。导电聚合物具有高的抗腐蚀性、高的表面积、低电阻和高稳定性得到很大关注。本文综述了近年来国内外导电聚合物/金属复合电极材料在燃料电池中的研究进展。
Low-temperature fuel cells as new-style energy devices have attracted great attention because of their high-energy conversion efficiency, low operating temperature, low pollutant emission, the simplicity of handling liquid fuel and quick startup. High efficient electrochemical oxidation of small organic molecules will be directly related to the development and application of low-temperature fuel cells. The current state of the art employs carbon-supported platinum and platinum alloys as anode and cathode catalysts in low-temperature fuel cells. However, carbon material may cause easily Pt particle aggregation and carbon corrosion occurred by electrochemical oxidation, which lower the utilization rate of Pt and the lifetime of fuel cell. CPs have attracted great attention because of their advantages of high anti corrosion, low resistance and high stability. In this paper, we illustrate the recent research progress of some CPs/metal composites proposed as electrode materials for fuel cells. Contents 1 Introduction
2 Preparation of CPs nanostructures
3 Preparation of CPs/ metal composites
4 Application of CPs/ metal composites in electrolysis
4.1 PAN supported metals applied in electrocatalysis
4.2 PPy supported metals applied in electrocatalysis
4.3 PTh supported metals applied in electrocatalysis
4.4 Other CPs supported metals applied in electrocatalysis
5 Conclusion

中图分类号: 

()
[1] Thavasi V, Singh G, Ramakrishna S. Energy Environ. Sci., 2008, 1: 205-221
[2] Xie J, Wood D L, More K L, Atanassov P, Borup R L. J. Electrochem. Soc., 2005, 152: A1011-A1020
[3] Roth C, Martz N, Buhrmester T, Scherer J, Fuess H. PCCP, 2002, 4: 3555-3557
[4] Liu J G, Zhou Z H, Zhao X S, Xin Q, Sun G Q, Yi B L. PCCP, 2004, 6: 134-137
[5] Mu Y Y, Liang H P, Hu J S, Jiang L, Wan L J. J. Phys. Chem. B, 2005, 109: 22212-22216
[6] Niebling J, Gorgos K. US 5084144, 1992
[7] Inzelt G, Pineri M, Schultze J W, Vorotyntsev M A. Electrochim. Acta, 2000, 45: 2403-2421
[8] Golabi S M, Nozad A. J. Electroanal. Chem., 2002, 521: 161-167
[9] Selvaraj V, Alagar M, Kumar S K. Appl. Catal. B, 2007, 75: 129-138
[10] Kuo C W, Huang L M, Wen T C, Gopalan A. J. Power Sources, 2006, 160: 65-72
[11] Mortimer R J. Chem. Soc. Rev., 1997, 26: 147-156
[12] Bai H, Shi G Q. Sensors, 2007, 7: 267-307
[13] Coakley K M, McGehee M D. Chem. Mater., 2004, 16: 4533-4542
[14] Snook G A, Kao P, Bestb A S. J. Power Sources, 2011, 196: 1-12
[15] Scott J C, Bozano L D. Adv. Mater., 2007, 19: 1452-1463
[16] Thompson B C, Fréchet J M J. Angew. Chem. Int. Ed., 2008, 47: 58-77
[17] Hatchett D W, Josowicz M. Chem. Rev., 2008, 108: 746-769
[18] Li C, Bai H, Shi G Q. Chem. Soc. Rev., 2009, 38: 2397-2409
[19] Cho S I, Lee S B. Acc. Chem. Res., 2008, 41: 699-707
[20] Liang L, Liu J, Windisch C F, Exarhos G J, Lin Y H.Angew. Chem. Int. Ed., 2002, 41: 3665-3668
[21] Hatano T, Takeuchi M, Ikeda A, Shinkai S. Org. Lett., 2003, 5: 1395-1398
[22] Lu G W, Li C, Shi G Q. Polymer, 2006, 47: 1778-1784
[23] Abidian M R, Kim D H, Martin D C. Adv. Mater., 2006, 18: 405-409
[24] Zang J, Li C M, Bao S J, Cui X, Bao Q, Sun C Q. Macromolecules, 2008, 41: 7053-7057
[25] Pringle J M, Forsyth M, Wallace G G, MacFarlane D R.Macromolecules, 2006, 39: 7193-7195
[26] Lu G W, Shi G Q. J. Electroanal. Chem., 2006, 586: 154-160
[27] Shchukin D G, Köhler K, Möhwald H. J. Am. Chem. Soc.,2006, 128: 4560-4561
[28] Sih B C, Wolf M O. Chem. Commun., 2005, 3375-3384
[29] Rapecki T, Donten M, Stojek Z. Electrochem. Commun., 2010, 12: 624-627
[30] Heinig N F, Kharbanda N, Pynenburg M R, Zhou X J, Schultz G A, Leung K T. Mater. Lett., 2008, 62: 2285-2288
[31] Alqudami A, Annapoorni S, Sen P, Rawat R S. Synth. Met., 2007, 157: 53-59
[32] Chen W, Li CM, Yu L, Lu Z, Zhou Q. Electrochem. Commun., 2008, 10: 1340-1343
[33] Katz E, Shipway A N, Willner I. Nanoscale Materials (Eds. Liz-Marzán L M, Kamat P), Dordrecht: Kluwer, 2003. chap. 2, 5-78
[34] Tsakova V. J. Solid State Electrochem., 2008, 12: 1421
[35] Kost K M, Bartak D E, Kazee B, Kuwana T. Anal. Chem., 1988, 60: 2379-2384
[36] Li H S, Josowicz M, Baer D R, Engelhard M H, Janata J. J. Electrochem. Soc., 1995, 142: 798-805
[37] De Oliveira L M F, Moutet J C, Hamar-Thibault S. J. Mater. Chem., 1992, 2: 167-173
[38] Mikhaylova A A, Molodkina E B, Khazova O A, Bagotzky V S. J. Electroanal. Chem., 2001, 509: 119-127
[39] Sarma T K, Chattopadhyay A. J. Phys. Chem. A, 2004, 108: 7837-7842
[40] Pillalamarri S K, Blum F D, Tokuhim A T, Bertino M F. Chem. Mater., 2005, 17 (24): 5941-5944
[41] Khanna P K, Singh N, Charan S, Viswanath A K. Mater. Chem. Phys., 2005, 92: 214-219
[42] Granot E, Katz E, Basnar B, Willner I. Chem. Mater., 2005, 17 (18): 4600-4609
[43] Hatchett D W, Wijeratne R, Kinyanjui J M. J. Electroanal. Chem., 2006, 593: 203-210
[44] Gholamian M, Sundaram J, Contractor A Q. Langmuir, 1987, 3: 741-744
[45] 过家好 (Guo J H), 陈俊明 (Chen J M), 陈忠平 (Chen Z P).塑料工业(China Plastic Industry), 2007, 35: 42-45
[46] Napporn W T, Laborde H, Leger J M, Lamy C. J. Electroanal. Chem., 1996, 404: 153-159
[47] Laborde H, Leger J M, Lamy C. J. Appl. Electrochem., 1994, 24: 219-226
[48] Salavagione H J, Sanchis C, Morallon E. J. Phys. Chem. C, 2007,111: 12454-12460
[49] Palmero S, Colina A, Munoz E, Heras A, Ruiz V, Lopez-Palacios J. Electrochem. Commun., 2009, 11: 122-125
[50] Li Y F, Qian R Y. Synth. Met., 1988, 26: 139-151
[51] Lukachova L V, Shkerin E A, Puganova E A, Karyakina E E, Kiseleva S G, Orlov A V, Karpacheva G P, Karyakin A A. J. Electroanal. Chem., 2003, 544: 59-63
[52] Nagashree K L, Ahmed M F. Synth. Met., 2008, 158: 610-616
[53] Podlovchenko B I, Maksimov Y M, Gladysheva T D, Kolyadko E A. Russ. J. Electrochem., 2000, 36: 731-735
[54] Lai E K W, Beattie P D, Orfino F P, Simon E, Holdcroft S. Electrochim. Acta, 1999, 44: 2559-2569
[55] Huang L M, Chen C H, Wen T C, Gopalan A. Electrochim. Acta, 2006, 51: 2756-2764
[56] Huang Q M, Zhang Q L, Huang H L, Li W S, Huang Y J, Luo J L. J. Power Sources, 2008, 184: 338-343
[57] Huang L M, Tang W R, Wen T C. J. Power Sources, 2007, 164: 519-526
[58] Liu F J, Huang L M, Wen T C, Li C F, Huang S L, Gopalan A. Synth. Met., 2008, 158: 767-774
[59] Liu F J, Huang L M, Wen T C, Li C F, Huang S L, Gopalan A. Synth. Met., 2008, 158: 603-609
[60] Feast W J, Tsibouklis J, Pouwer K L, Groenendaal L, Meijer E W. Polymer, 1996, 37: 5017-5047
[61] Kim S, Park S J. Solid State Ionics, 2008, 178: 1915-1921
[62] Hu Z A, Shang X L, Yang Y Y, Kong C, Wu H Y. Electrochim. Acta, 2006, 51: 3351-3355
[63] Hu Z A, Ren L J, Feng X J, Wang Y P, Yang Y Y, Shi J, Mo L P, Lei Z Q. Electrochem. Commun., 2007, 9: 97-102
[64] Shi H. Electrochim. Acta, 1996, 41 (10): 1633-1639
[65] Roy S C, Christensen P A, Hamnett A, Thomas K M, Trapp V. J. Electrochem. Soc., 1996, 143 (10): 3073-3079
[66] Frelink T, Visscher W, Veen J A R. J. Electroanal. Chem., 1995, 382 (1/2): 65-72
[67] Wu G, Li L, Li J H, Xu B Q. Carbon, 2005, 43: 2579-2587
[68] Zhiani M, Rezaei B, Jalili J. Int. J. Hydrogen Energy, 2010, 35: 9298-9305
[69] Prasad K R, Munichandraiah N. J. Power Sources, 2002, 103 (2): 300-304
[70] Lin Y W, Wu T M. Compos. Sci. Technol., 2009, 69: 2559-2565
[71] Wu T M, Lin Y W, Liao C S. Carbon, 2005, 43: 734-740
[72] Hughes M, Chen G Z, Shaffer M S P, Fray D J, Windle A H. Chem. Mater., 2002, 14: 1610-1613
[73] Wu T M, Chang H L, Lin Y W. Compos. Sci. Technol., 2009, 69: 639-644
[74] Wooa H S, Czerw R, Webster S, Carroll D L, Park J W, Lee J H. Synth. Met., 2001, 116: 369-372
[75] Zhu Z Z, Wang Z, Li H L. Appl. Surf. Sci., 2008, 254: 2934-2940
[76] Shi J, Wang Z, Li H L. J. Mater. Sci., 2007, 42: 539-544
[77] Capon A, Parsons R. J. Electroanal. Chem., 1973, 45: 205-231
[78] Mikhaylova A A, Tusseeva E K, Mayorova N A, Rychagov A Y, Volfkovich Y M, Krestinin A V, Khazova O A. Electrochim. Acta, 2011, 56: 3656-3665
[79] Xu C W, Zeng R, Shen P K, Wei Z D. Electrochim. Acta, 2005, 51: 1031-1035
[80] 旷亚非 (Kuang Y F), 游军飞 (You J F), 周海晖(Zhou H H), 李云飞 (Li Y F), 陈金华(Chen J H). 湖南大学学报(Journal of Hunan University), 2007, 34(3): 57-60
[81] Banon M L, Lopez V, Ocon P, Herrasti P. Synth. Met., 1992, 48: 355-362
[82] Profeti D, Olivi P. Electrochim. Acta, 2004, 49: 4979-4985
[83] Ren F F, Zhou W Q, Du Y U, Yang P, Wang C Y, Xu J K. Int. J. Hydrogen Energy, 2011, 36: 6414-6423
[84] Raoof J B, Karimi M A, Hosseini S R, Mangelizade S. Int. J. Hydrogen Energy, 2011, 36: 13281-13287
[85] Medway S L, Lucas C A, Kowal A, Nichols R J, Johnson D. J. Electroanal. Chem., 2006, 587: 172-181
[86] Vukovic M. J. Appl. Electrochem., 1994, 24: 878-882
[87] Koper M T M, Hachkar M, Beden B. J. Chem. Soc., Faraday Trans., 1996, 92: 3975-3982
[88] Santhosh P, Gopalan A, Vasudevan T, Lee K P. Appl. Surf. Sci., 2006, 252: 7964-7969
[89] Li Y J, Lenigk R, Wu X Z, Gruendig B, Dong S J, Renneberg R. Electroanalysis, 1998, 10: 671-676
[90] Gajendran P, Vijayanand S, Saraswathi R. J. Electroanal. Chem., 2007, 601: 132-138
[91] Golikand A N, Golabi S M, Maragheh M G, Irannejad L. J. Power Sources, 2005, 145: 116-123
[92] Pournaghi-Azar M H, Habibi B. J. Electroanal. Chem., 2007, 601: 53-62
[93] Maiyalagan T. J. Power Sources, 2008, 179: 443-450
[94] Habibi B, Pournaghi-Azar M H. Int. J. Hydrogen Energy, 2010, 35: 9318-9328
[95] Habibi B, Pournaghi-Azar M H, Abdolmohammad-Zadeh H, Razmi H. Int. J. Hydrogen Energy, 2009, 34: 2880-2892
[96] Golabi S M, Nozad A. Electroanalysis, 2003, 15: 278-286
[97] Ojani R, Raoof J B, Fathi S. J. Solid State Electrochem., 2009, 13: 927-934
[98] Taraszewska J, Roslonek G. J. Electroanal. Chem., 1994, 364: 209-213
[99] El-Shafei A A. J. Electroanal. Chem., 1999, 471: 89-95
[100] Eramo F D, Marioli J M, Arevalo A A, Sereno L E. Electroanalysis, 1999, 11: 481-486
[101] Gopalan A I, Lee K P, Manesh K M, Santhosh P, Kim J H. J. Mol. Catal. A: Chem., 2006, 256: 335-345
[102] Ojani R, Raoof J B, Rahemi V. Int. J. Hydrogen Energy, 2011, 36; 13288-13294
[103] Cai Z H, Martin C R. J. Am. Chem. Soc., 1989, 111: 4138-4139
[104] Kim Y, Kim Y, Kim S, Kim E. ACS Nano, 2010, 4 (9): 5277-5284
[105] Rajesh B, Thampi K R, Bonard J M, Mathieu H J, Xanthopoulos N, Viswanathan B. Electrochem. Solid-State Lett., 2004, 7: A404-A407
[106] Chen Z W, Xu L B, Li W Z, Waje M, Yan Y S. Nanotechnology, 2006, 17: 5254-5259
[107] Michel M, Ettingshausen F, Scheiba F, Wolz A, Roth C. PCCP, 2008, 10: 3796-3801
[108] Zhou H H, Jiao S Q, Chen J H, Wei W Z, Kuang Y F. J. Appl. Electrochem., 2004, 34: 455-459
[109] Liu F J, Huang L M, Wen T C, Gopalan A. Synth. Met., 2007, 157: 651-658
[110] Pandey R K, Lakshminarayanan V. J. Phys. Chem. C, 2009, 113: 21596-21603
[111] Hatchett D W, Josowicz M, Janata J. J. Phys. Chem. B, 1999, 103: 10992-10998
[112] Li G, Maritinez C, Semancik S. J. Am. Chem. Soc., 2005, 127: 4903-4909
[113] Ge J, Xing W, Xue X, Liu C, Lu T, Liao J. J. Phys. Chem. C, 2007, 111: 17305-17310
[114] Yin Z, Zheng H, Ma D, Bao X. J. Phys. Chem. C, 2009, 113: 1001-1005
[115] Sivakumar C. Electrochim. Acta, 2007, 52: 4182-4190
[116] Jiang C M, Lin X Q. J. Power Sources, 2007, 164: 49-55
[117] Jiang C, Chen H, Yu C, Zhang S, Liu B H, Kong J L. Electrochim. Acta, 2009, 54: 1134-1140
[118] 李靖(Li J). 上海第二工业大学学报 (Journal of Shanghai Second Polytechnic University), 2009, 26: 312-317
[119] Bose C S C, Rajeshwar K. J. Electroanal. Chem., 1992, 333: 235-256
[120] Chen C C, Bose C S C, Rajeshwar K. J. Electroanal. Chem., 1993, 350: 161-176
[121] Strike D J, De Rooij N F, Koudelka-Hep M, Ulmann M, Augustynski J. J. Appl. Electrochem., 1992, 22: 922-926
[122] Yang H, Lu T, Xue K, Sun S, Lu G, Chen S. J. Electrochem. Soc., 1997;144 (7): 2302-2307
[123] Becerk I, Suzer S, Kadirgan F. J. Electroanal. Chem., 2001, 502: 118-125
[124] Warren L F, Anderson D P. J. Electrochem. Soc., 1987, 134: 101-105
[125] Adhikari A, Radhakrishnan S, Patil R. Synth. Met., 2009, 159: 1682-1688
[126] Tian L, Qi Y J, Wang B B. J. Colloid Interface Sci., 2009, 333: 249-253
[127] Qi Z G, Lefebvre M C, Pickup P G. J. Electroanal. Chem., 1998, 459: 9-14
[128] Li Y, Shi G Q. J. Phys. Chem. B, 2005, 109: 23787-23793
[129] Oh E J, Jang K S, MacDiarmid A G. Synth. Met., 2002, 125: 267-272
[130] Bensebaa F, Farah A A, Wang D, Bock C, Du X, Kung J, Page Y L. J. Phys. Chem. B, 2005, 109: 15339-15344
[131] Zhao H B, Li L, Yang J, Zhang Y M. J. Power Sources, 2008, 184: 375-380
[132] Bai Z Y, Yang L, Li L, Lv J, Wang K, Zhang J. J. Phys. Chem. C, 2009, 113 (24): 10568-10573
[133] Reddy A L M, Rajalakshmi N, Ramaprabhu S. Carbon, 2008, 46: 2-11
[134] Qu B, Xu Y T, Lin S J, Zheng Y F, Dai L Z. Synth. Met., 2010, 160: 732-742
[135] Zhao Y C, Yang X L, Tian J N, Wang F Y, Zhan L. J. Power Sources, 2010, 195: 4634-4640
[136] Zhao H B, Yang J, Li L, Li H, Wang J L, Zhang Y M. Int. J. Hydrogen Energy, 2009, 34: 3908-3914
[137] Selvaraj V, Alagar M. Electrochem. Commun., 2007, 9: 1145-1153
[138] Kulesza P J, Matczak M, Wolkiewicz A, Grzybowska B, Galkowski M, Malik M A, Wieckowski A. Electrochim. Acta, 1999, 44: 2131-2137
[139] Jia N, Lefebvre M C, Halfyard J, Qi ZG, Pickup P G. Electrochem. Solid-State Lett., 2000, 3 (12): 529-531
[140] Nobuko Y, Masayoshi Y, Minato E, Masayuki M. Electrochemistry, 2007, 75 (2): 190-192
[141] Minato E, Masayoshi Y, Nobuko Y, Masayuki M. Electrochemistry, 2007, 75 (2): 193-196
[142] Liu J W, Qiu J X, Miao Y Q, Chen J R. J. Mater. Sci., 2008, 43: 6285-6288
[143] Rajesh B, Thampi K R, Bonard J M, Mathieu H J, Xanthopoulos N, Viswanathan B. Chem. Commun., 2003, 2022-2023
[144] Li J, Lin X Q. J. Electrochem. Soc., 2007, 154 (10): B1074-B1079
[145] Zhou Q, Li C M, Li J, Cui X Q, Gervasio D. J. Phys. Chem. C, 2007, 111 (30): 11216-11222
[146] Schrebler R, del Valle M A, Gomez H, Veas C, Cordova R. J. Electroanal. Chem., 1995, 380: 219-227
[147] Valle M A D, Diaz F R, Bodini M E, Pizarro T, Cordova R, Gomez H, Schrebler R. J. Appl. Electrochem., 1998, 28: 943-946
[148] (a)Giacomini M T. Ticianelli E A, McBreen J, Balasubramanian M. J. Electrochem. Soc., 2001, 148: A323-A329; (b)Giacomini M T, Balasubramanian M, Khalid S, McBreen J, Ticianelli E A. J. Electrochem. Soc., 2003, 150: A588-A593
[149] Selvaraj V, Alagar M, Hamerton I. Appl. Catal. B, 2007, 73: 172-179
[150] Tourillon G, Garnier F. J. Phys. Chem., 1984, 88: 5281-5285
[151] Yassar A, Roncali J, Garnier F. J. Electroanal. Chem., 1988, 255: 53-69
[152] Swathirajan S, Mikhail Y M. J. Electrochem., Soc., 1992, 139: 2105-2110
[153] Galal A, Atta N F, Darwish S A, Ali S M. Top. Catal., 2008, 47: 73-83
[154] Skotheim T A (Ed.). New York: Marcel Dekker, 1986. vol. 1
[155] Rajesh B, Thampi K R, Bonard J M, Xanthopoulos N, Mathieu H J, Viswanathan B. J. Phys. Chem. B, 2004, 108: 10640-10644
[156] Rajesh B, Thampi K R, J Bonard M, McEvoj A J, Xanthopoulos N, Mathieu H J, Viswanathan B. J. Power Sources, 2004, 133: 155-161
[157] Bayer A G. EP 339340, 1988
[158] Heywang G, Jonas F. Adv. Mater., 1992, 4: 116-118
[159] Dietrich M, Heinze J, Heywang G, Jonas F. J. Electroanal. Chem., 1994, 369: 87-92
[160] Yamato H, Ohwa M, Wernet W. J. Electroanal. Chem., 1995, 397: 163-170
[161] Pei Q B, Zuccarello G, Ahlskogt M, Ingans O. Polymer, 1994, 35: 1347-1351
[162] Qi Z, Pickup P G. Chem. Commun., 1998, 2299-2300
[163] Lefebvre M, Qi Z, Pickup P G. J. Electrochem. Soc., 1999, 146 (6): 2054-2058
[164] Kuo C W, Sivakumar C, Wen T C. J. Power Sources, 2008, 185: 807-814
[165] Patra S, Munichandraiah N. Langmuir, 2009, 25: 1732-1738
[166] Drillet J F, Dittmeyer R, Juttner K. J. Appl. Electrochem., 2007, 37: 1219-1226
[167] Zhang K F, Guo D J, Liu X, Li J, Li H L, Su Z H. J. Power Sources, 2006, 162: 1077-1081
[168] Murugan A V, Kwon C W, Campet G, Kale B B, Mandale A B, Sainker S R, Gopinath C S, Vijayamohanan K. J. Phys. Chem. B, 2004, 108: 10736-10742
[169] Maiyalagan T, Viswanathan B. Mater. Chem. Phys., 2010, 121: 165-171
[170] Pandey R K, Lakshminarayanan V. J. Phys. Chem. C, 2010, 114: 8507-8514
[171] Kelaidopoulou A, Abelidou E, Kokkinidis G. J. Appl. Electrochem., 1999, 29: 1255-1261
[172] Choi J H, Park K W, Lee H K, Kim Y M, Lee J S, Sung Y E. Electrochim. Acta, 2003, 48: 2781-2789
[173] Yu L, Sathe M, Zeng X. J. Electrochem. Soc., 2005,152 (11): E357-E363
[174] elebi M S, Pekmez K, Ozyoruk H, Yldz A. J. Power Sources, 2008, 183: 8-13
[175] (a) Qian G M,Yang C Z, Pu W H, Huang J T, Zhang J D. Synth. Met., 2007, 157: 448-453; (b)钱功明(Qian G M), 杨昌柱(Yang C Z), 方柏(Fang B), 陈铁军(Chen T J). 分析科学学报 (Journal of Analytic Science), 2009, 25: 341-343
[176] Ren F F, Zhou R, Jiang F X, Zhou W Q, Du Y K, Xu J K, Wang C Y. Fuel cells, 2012, 12: 116-123
[177] Nagashree K L, Raviraj N H, Ahmed M F. Electrochim. Acta, 2010, 55: 2629-2635
[178] Zhou W Q, Du Y K, Zhang H M, Xu J K, Yang P. Electrochim. Acta, 2010, 55: 2911-2917
[179] Zhou W Q, Zhai C Y, Du Y K, Xu J K, Yang P. Int. J. Hydrogen Energy, 2009, 34: 9316-9323
[180] Zhou W Q, Wang C Y, Xu J K, Du Y K, Yang P. J. Power Sources, 2011, 196: 1118-112
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[3] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[4] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[5] 胡传波, 厉英, 孔亚州, 丁玉石. 改性聚苯胺及其衍生物涂层的防腐性能[J]. 化学进展, 2016, 28(8): 1238-1250.
[6] 舒昕, 李兆祥, 夏江滨. 聚噻吩的合成方法[J]. 化学进展, 2015, 27(4): 385-394.
[7] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[8] 宿丹, 第凤, 邢季, 车剑飞, 肖迎红. 导电聚合物在药物可控释放领域的应用[J]. 化学进展, 2014, 26(12): 1962-1976.
[9] 李庆川, 曹立新, 胡海峰, 王凯, 闫培生. 黄曲霉毒素电化学生物传感器[J]. 化学进展, 2014, 26(04): 657-664.
[10] 苗力孝, 王维坤, 王梦佳, 段博超, 杨裕生, 王安邦. 含单质硫正极复合材料[J]. 化学进展, 2013, 25(11): 1867-1875.
[11] 肖横洋, 第凤, 车剑飞, 肖迎红. 神经元电极的表面修饰及其功能化设计[J]. 化学进展, 2013, 25(11): 1962-1972.
[12] 陶凯, 王继乾*, 夏道宏, 徐海, 吕建仁, 山红红. 多肽在贵金属纳米粒子制备中的应用[J]. 化学进展, 2012, 24(07): 1294-1308.
[13] 朱英, 刘明杰, 万梅香, 江雷. 一维纳米纤维构筑的导电聚合物三维结构及其可控的浸润性[J]. 化学进展, 2011, 23(5): 819-828.
[14] 夏文健, 孟令杰, 刘丽, 路庆华. 贵金属纳米粒子修饰碳纳米管的研究[J]. 化学进展, 2010, 22(12): 2298-2308.
[15] 涂亮亮 贾春阳 翁小龙 邓龙江 唐武. 导电聚合物电致变色材料*[J]. 化学进展, 2010, 22(10): 2053-2059.