English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1794-1800 前一篇   后一篇

• 综述与评论 •

有“生命”的电线:浅析微生物纳米导线电子传递机制及其应用

许杰龙1,2, 周顺桂2, 袁勇2, 王跃强2, 庄莉*2   

  1. 1. 中国科学院广州地球化学研究所 广州 510640;
    2. 广东省生态环境与土壤研究所 广州 510650
  • 收稿日期:2012-01-01 修回日期:2012-03-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 庄莉 E-mail:lzhuang@soil.gd.cn
  • 基金资助:

    国家自然科学基金项目(No.21177030, 41171205)、广州市科技项目(No.11C64060740)和广东省科技攻关项目(No.2011B030900003)资助

Live Wire: A Review on Electron Transfer Mechanism and Applications of Microbial Nanowires

Xu Jielong1,2, Zhou Shungui2, Yuan Yong2, Wang Yueqiang2, Zhuang Li2   

  1. 1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China
  • Received:2012-01-01 Revised:2012-03-01 Online:2012-09-24 Published:2012-09-27
微生物纳米导线是指在缺少可溶性电子受体的条件下由微生物形成类似菌毛的导电附属物,通过它传递电子是微生物为提高胞外电子传递效率而进化形成的一种有效的电子传递方式。微生物可利用具有高效导电特性的纳米导线将电子传递到远离细胞表面的地方,从而使微生物摆脱了需要直接接触胞外电子受体(Fe(Ⅲ)氧化物或电极)才能传递电子的限制。微生物纳米导线的发现丰富了人们对胞外呼吸多样性的认识,同时其在提高微生物燃料电池产电效率、促进环境中有机污染物的快速降解和生物能源等方面具有重要的应用前景,成为了当前研究的前沿和热点。本文简单介绍了微生物纳米导线的基本特性和产生纳米导线的微生物种类,重点阐述了由GeobacterShewanella微生物生成的纳米导线电子传递机制以及其在生物能源和生物修复等方面的应用,并展望了今后的研究重点。
Microbial nanowires are electrically conductive pilus-like appendages, which are produced under soluble electron acceptor-limiting conditions. The findings of microbial nanowires demonstrate a novel and efficient pathway for extracellular electron transfer. The microbes use these conductive nanowires to transfer electrons over long distances, from the cell surface to the surface of extracellular electron acceptors (such as Fe(Ⅲ) oxides and electrodes), overcoming the requirement of direct physical contact between microbes and electron acceptors. The discovery of microbial nanowires has advanced our understanding of extracellular respiration and the diversity of microbial respiratory systems in nature. It has great significances for electricity production of microbial fuel cell, degradation of organic pollutants and bioenergy generation. Moreover, it will help us to develop the advanced materials and micromodule equipments in the emerging field of nanotechnology. In this review, we introduced the basic characteristics of microbial nanowires and the microorganisms capable of producing nanowires. The studies on their electron transfer mechanisms and applications in bioremediation and bioenergy are reviewed with an emphasis, and the prospects of key researches in the future are discussed. Contents 1 Introduction
2 What is microbial nanowire
3 Microorganisms that produce nanowires
4 Electron transfer mechanism of microbial nanowires
5 Applications of microbial nanowires
5.1 Microbial fuel cell
5.2 Environmental remediation
5.3 Bioenergy generation
5.4 Other applications
6 Prospects

中图分类号: 

()
[1] Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. Nature, 2005, 435(7045): 1098-1101
[2] Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S, Culley D E, Reed S B, Romine M F, Saffarini D A, Hill E A, Shi L, Elias D A, Kennedy D W, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson K H, Fredrickson J K. Proc. Natl. Acad. Sci. USA, 2006, 106(23): 9535-9535
[3] Ntarlagiannis D, Atekwana E A, Hill E A, Gorby Y. Geophys. Res. Lett., 2007, 34(17): art. no. L17305
[4] Ball P. Nature, 2007, 449(7161): 388-388
[5] Rabaey K, Rodr韌uez J, Blackall L L, Keller J, Gross P, Batstone D, Verstraete W, Nealson K H. ISME J., 2007, 1(1): 9-18
[6] Lovley D R. Energ. Environ. Sci., 2011, 4(12): 4896-4906
[7] Leung K M, Wanger G, Guo Q, Gorby Y, Southam G L, Woon M, Yang J. Soft Matter, 2011, 7(14): 6617-6621
[8] Sanchez C. Nat. Rev. Microbiol., 2011, 6(9): 573-579
[9] El-Naggar M Y, Gorby Y A, Xia W, Nealson K H. Biophys. J., 2008, 95(1): L10-L12
[10] Richter H, Nevin K P, Jia H F, Lowy D A, Lovley D R, Tender L M. Energ. Environ. Sci., 2009, 2(5): 506-516
[11] El-Naggar M Y, Wanger G, Leung K M, Yuzvinsky T D, Southam G, Yang J, Lau W M, Nealson K H, Gorby Y A. Abstr. Pap. Am. Chem. Soc., 2011, 107(42): 18127-18131
[12] Sarah M, Strycharz-Glaven R M S, Anthony G E, Leonard M T. Energ. Environ. Sci., 2011, 4(11): 4366-4379
[13] Gorby Y A. Bio Micro and Nanosystems Conference, 2006. 20
[14] Leang C, Qian X, Mester T, Lovley D R. Appl. Environ. Microbiol., 2010, 76(12): 4080-4084
[15] Tremblay P L, Aklujkar M, Leang C, Nevin K P, Lovley D R. Env. Microbiol. Rep., 2012, 4(1): 82-88
[16] Malvankar N S, Vargas M, Nevin K P, Franks A E, Leang C, Covalla S F, Johnson J P, Kim B C, Inoue K, Rotello V M, Tuominen M T, Lovley D R. Nat. Nanotechnol., 2011, 6(9): 373-579
[17] Inoue K, Qian X, Morgado L, Kim B C, Mester T, Izallalen M, Salgueiro C A, Lovley D R. Appl. Environ. Microbiol., 2010, 76(12): 3999-4007
[18] Mehta T, Coppi M V, Childer S E, Lovley D R. Appl. Environ. Microbiol., 2005, 71(12): 8634-8641
[19] Qian X, Mester T, Morgado L, Arakawa T, Sharma M L, Inoue K, Joseph C, Salgueiro C A, Maroney M J, Lovley D R. Biochimica. Biophysica Acta (BBA)-Bioenergetics, 2011, 1807(4): 404-412
[20] Gorby Y A, Yanina S V, Moyles D, McLean J S, Rosso K M, Beveridge T J, Kennedy D W, Marshall M J, Dohnalkova A, Beliaev A, Fredrickson J K, Nealson K. Abstr. Pap. Am. Chem. Soc., 2006, S232
[21] Rollefson J B, Stephen C S, Tien M, Bond D R. J. Bacteriol., 2011, 193(5): 1023-1033
[22] Gralnick J A, Newman D K. Mol. Microbiol., 2007, 65(1): 1-11
[23] Lovley D R, Holmes D E, Nevin K P. Adv. Microb. Physiol., 2004, 49: 219-286
[24] Hartshorne R S, Reardon C L, Ross D, Nuester J, Clarke T, Gates A J, Mills P C, Fredrickson J K. Proc. Natl. Acad. Sci. USA, 2009, 106(52): 22169-22174
[25] Shi L, Chen B, Wang Z, Elias D A, Mayer M U, Gorby Y A, Ni S, Lower B H, Kennedy D W, Wunschel D S. J. Bacteriol., 2006, 188(13): 4705-4714
[26] Xu F L, Duan J Z, Hou B R. Bioelectrochemistry, 2010, 78(1): 92-95
[27] Shi L, Squier T C, Zachara J M, Fredrickson J K. Mol. Microbiol., 2007, 65(1): 12-20
[28] Reguera G, Nevin K P, Nicoll J S, Covalla S F, Woodard T L, Lovley D R. Appl. Environ. Microbiol., 2006, 72(11): 7345-7348
[29] Reguera G, Nevin K P, Nicoll J S, Covalla S F, Lovley D R. Abstr. Gen. Meet. Am. Soc. Microbiol., 2006, Q143
[30] Jiang S, Kim M G, Kim S J, Jung H S, Lee S W, Sadowsky M J, Hur H G. Chem. Commun., 2011, 47(28): 8076-8078
[31] Morita M, Malvankar N S, Franks A E, Summers Z M, Giloteaux L, Rotaru A E, Rotaru C, Lovley D R. mBio., 2011, 2(4): art. no. e00159-11
[32] Geelhoed J S, Hamelers H V M, Stams A J M. Curr. Opin. Microbiol., 2010, 13 (3): 307-315
[33] Jeremiasse A W, Hamelers H V M, Buisman C J N. Bioelectrochemistry, 2010, 78(1): 39-43
[34] Rozendal R A, Jeremiasse A W, Hamelers H V M, Buisman C J N. Environ. Sci. Technol., 2007, 42 (2): 629-634
[35] Flynn J M, Ross D E, Hunt K A, Bond D R, Gralnick J A. mBio., 2010, 1(5): art. no. e00190-10
[36] Sayler G S, Simpson M L, Cox C D. Curr. Opin. Microbiol., 2004, 7(3): 267-273
[37] Reguera G. Trends Microbiol., 2011, 19 (3): 105-113
[38] O'Neil R A, Holmes D E, Coppi M V, Adams L A, Larrahondo M J, Ward J E, Nevin K P, Woodard T L. Environ. Microbiol., 2008, 10(5): 1218-1230
[1] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[2] 陈立香, 李祎頔, 田晓春, 赵峰. 革兰氏阳性电活性菌的电子传递及其应用[J]. 化学进展, 2020, 32(10): 1557-1563.
[3] 马金莲, 马晨, 汤佳, 周顺桂, 庄莉. 电子穿梭体介导的微生物胞外电子传递:机制及应用[J]. 化学进展, 2015, 27(12): 1833-1840.
[4] 史亚利,潘媛媛,王杰明,蔡亚歧. 全氟化合物的环境问题[J]. 化学进展, 2009, 21(0203): 369-376.
[5] 蔡亚岐,史亚利,张萍,牟世芬,江桂斌. 高氯酸盐的环境污染问题*[J]. 化学进展, 2006, 18(11): 1554-1564.