English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1833-1840 DOI: 10.7536/PC150533 前一篇   后一篇

• 综述与评论 •

电子穿梭体介导的微生物胞外电子传递:机制及应用

马金莲1,2,3, 马晨4, 汤佳3, 周顺桂3, 庄莉3*   

  1. 1. 中国科学院广州地球化学研究所 广州 510640;
    2. 中国科学院大学 北京 100049;
    3. 广东省生态环境与土壤研究所 广东省农业环境综合治理重点实验室 广州 510650;
    4. 中国热带农业科学院分析测试中心 海口 571101
  • 收稿日期:2015-05-01 修回日期:2015-07-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 庄莉 E-mail:lzhuang@soil.gd.cn
  • 基金资助:
    国家自然科学基金项目(No.41301256,31470561)和广东省自然科学基金项目(No.S20120011151,S2013040015231)资助

Mechanisms and Applications of Electron Shuttle-Mediated Extracellular Electron Transfer

Ma Jinlian1,2,3, Ma Chen4, Tang Jia3, Zhou Shungui3, Zhuang Li3*   

  1. 1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China;
    4. Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
  • Received:2015-05-01 Revised:2015-07-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 41301256,31470561) and the National Science Foundation of Guangdong Province,China(No. S20120011151,S2013040015231).
厌氧条件下微生物将电子传递给胞外电子受体的现象非常普遍,电子穿梭体(electron shuttle,ES)是介导胞外电子传递过程的重要途径之一,但其具体的机制尚未明晰。一部分微生物自身能分泌一些物质作为内生ES,另一部分微生物能利用天然存在或人工合成的某些物质作为外生ES,并将其携带的电子传递至微生物胞外电子受体。ES介导微生物胞外电子传递的基本过程为:氧化态电子穿梭体(ESox)接受电子变成还原态(ESred),ESred传递电子给胞外电子受体,自身再次氧化成ESox,从而循环往复。本文重点介绍不同种类ES及其电子穿梭机制,以及ES的分子扩散、氧化还原电势及电子转移能力对胞外电子传递过程的影响。ES介导的胞外电子传递过程直接影响污染物转化和微生物产电,因此在污染修复及生物能源等方面具有重要的应用前景。
Under anaerobic conditions, many microorganisms are capable of extracellular respiration involving electron transfer to or from extracellular substrates such as iron (hydr)oxides and humic substances. Electron shuttling is one of the significant strategies for extracellular electron transfer, however, the involved mechanism has not been thoroughly understood. Electron shuttles can be divided into endogenous electron shuttles that are self-produced by microbes themselves and exogenous electron shuttles that are natural substances or artificially synthesized materials. Electron shuttle-mediated extracellular electron transfer generally involves the following reactions: the oxidized form of electron shuttles (ESox) accept electrons from the oxidization of organic matter and become as the reduced form of electron shuttles (ESred), then ESred transfer electrons to extracellular electron acceptors and return to ESox. Through these steps, electron shuttles can be reversibly oxidized and reduced. This review mainly focuses on the electron transfer mechanisms of different electron shuttles, and the factors affecting extracellular electron transfer such as the molecule diffusion, redox potential and electron transfer capacity of electron shuttles. Electron shuttle-mediated extracellular electron transfer has significant influence on contaminants degradation and microbial electrogenesis, thus the better understanding of their mechanisms is very important to their implications in bioremediation and bioenergy.

Contents
1 Introduction
2 Electron transfer mechanisms of different electron shuttles
2.1 Endogenous electron shuttles
2.2 Exogenous electron shuttles
3 Factors affecting extracellular electron transfer
3.1 Molecule diffusion
3.2 Redox potential
3.3 Electron transfer capacity
4 Environmental implications
4.1 The applications of electron shuttles in pollutant biodegradation
4.2 The applications of electron shuttles in bioelectrochemical systems
5 Conclusion and outlook

中图分类号: 

()
[1] Lovley D R. Geobiology, 2008, 6: 225.
[2] Gralnick J A, Newman D K. Mol. Microbiol., 2007, 65: 1.
[3] von Canstein H, Ogawa J, Shimizu S, Lloyd J R. Appl. Environ. Microbiol., 2008, 74: 615.
[4] Brutinel E D, Gralnick J A. Appl. Microbiol. Biotechnol., 2012, 93: 41.
[5] Turick C E, Tisa L S, Caccavo F. Appl. Environ. Microbiol., 2002, 68: 2436.
[6] Summers Z M, Fogarty H E, Leang C, Franks A E, Malvankar N S, Lovley D R. Science, 2010, 330: 1413.
[7] Kato S, Hashimoto K, Watanab K. Proc. Natl. Acad. Sci. U.S.A., 2012, 109: 10042.
[8] Kappler A, Wuestner M L, Ruecker A, Harter J, Halama M, Behrens S. Environ. Sci. Technol. Lett., 2014, 1: 339.
[9] Chen S S, Rotaru A E, Shrestha P M, Malvankar N S, Liu F H, Fan W, Nevin K P, Lovley D R. Sci. Rep., 2014, 4: 1.
[10] Liu F H, Rotaru A E, Shrestha P M, Malvankar N S, Nevin K P, Lovley D R. Energ. Environ. Sci., 2012, 5: 8982.
[11] Kato S, Hashimoto K, Watanabe K. Environ. Microbiol.,2011, 14: 1646.
[12] Lovley D R, Holmes D E, Nevin K P. Adv. Microb. Physiol., 2004, 49: 219.
[13] Nevin K P, Lovley D R. Appl. Environ. Microbiol., 2002, 68: 2294.
[14] Watanabe K, Manefield M, Lee M, Kouzuma A. Curr. Opin. Biotech., 2009, 20: 633.
[15] Van der Zee F P, Cervantes F J. Biotechnol. Adv., 2009, 27: 256.
[16] Lovley D R, Coates J D, Blunt-Harris E L, Phillips E J P, Woodward J C. Nature, 1996, 382: 445.
[17] Hernandez M E, Kappler A, Newman D K. Appl. Environ. Microbiol., 2004, 70: 921.
[18] 邓丽芳(Deng L F), 李芳柏(Li F B), 周顺桂(Zhou S G), 黄德银(Huang D Y), 倪晋仁(Ni J L). 科学通报(Chinese Science Bulletin), 2009, 54(19):2983.
[19] Wang Y, Newman D K. Environ. Sci. Technol.,2008, 42: 2380.
[20] Wu Y D, Liu T X, Li X M, Li F B. Environ. Sci. Technol., 2014, 48: 9306.
[21] Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 3968.
[22] Kudlich M, Keck A, Klein J, Stolz A. Appl. Environ. Microbiol., 1997, 63: 3691.
[23] Kotloski N J, Gralnick J A. MBio., 2013, 4: e00553.
[24] Wolf M, Kappler A, Jiang J, Meckenstock R U. Environ. Sci. Technol., 2009, 43: 5679.
[25] Workman D, Woods S L, Gorby Y, Fredrickson J K, Truex M J. Environ. Sci. Technol., 1997, 31: 2292.
[26] Kaden J, Galushko A S, Schink B. Arch Microbiol., 2000, 178: 53.
[27] Torres C I, Marcus A K, Lee H S, Parameswaran P, Krajmalnik-Brown R, Rittmann B E. FEMS Microbiol. Rev., 2010, 34: 3.
[28] Li X M, Liu L, Liu T X, Yuan T, Zhang W, Li F B, Zhou S G, Li Y T. Chemosphere, 2013, 92: 218.
[29] Smith J A, Nevin K P, Lovley D R. Front. Microbiol., 2015, 6: 1.
[30] Li X M, Liu T X, Liu L, Li F B. RSC Adv., 2014, 4: 2284.
[31] Jiang J, Kappler A. Environ. Sci. Technol., 2008,42: 3563.
[32] Hong Y G, Guo J, Xu Z C, Xu M Y, Sun G P. J. Microbiol. Biotechnol., 2007, 17: 428.
[33] O'Loughlin E J. Environ. Sci. Technol., 2008, 42: 6876.
[34] 洪义国(Hong Y G),许玫英(Xu M Y),郭俊(Guo J),岑英华(Cen Y H),孙国萍(Sun G P). 应用与环境生物学报(Chinese Journal of Applied and Environmental Biology), 2005, 11(5):642.
[35] Pearce C I, Christie R, Boothman C, von Canstein H, Guthrie J T, Lloyd J R. Biotechnol. Bioeng., 2006, 95: 692.
[36] Pearce C I, Guthrie J T, Lloyd J R. Dyes Pigments, 2008, 76: 696.
[37] Cervantes F J, Enriquez J E, Mendoza Hernandez M R, Razo Flores E, Field J A. Water Sci. Technol., 2006, 54: 171.
[38] Chung K T, Fulk G E, Egan M. Appl. Environ. Microbiol., 1978, 35: 558.
[39] Hashsham S A, Freedman D. Appl. Environ. Microbiol., 1999, 65: 4537.
[40] Zhang C F, Katayama A. Environ. Sci. Technol., 2012, 46: 6575.
[41] Claudia G B, Field J A. Biotechnol. Bioeng., 2005, 89: 539.
[42] Cervantes F J, Vu-Thi-Thu L, Lettinga G, Field J A. Appl. Microbiol. Biotechnol., 2004, 64: 702.
[43] Yang Y G, Xu M Y, Guo J, Sun G P. Process Biochem., 2012, 47: 1707.
[44] 卢娜(Lu N),周顺桂(Zhou S G),倪晋仁(Ni J R). 化学进展(Progress in Chemistry), 2008, 20(7/8): 1233.
[45] Choi Y, Kim N, Kim S, Jung S. B. Kor. Chem. Soc., 2003, 24: 437.
[46] Park D H, Zeikus J G. Appl. Environ. Microbiol., 2000, 66: 1292.
[47] Park D H, Zeikus J G. Appl. Microbiol. Biotechnol., 2002,59: 58.
[48] Zhang D D, Zhang C F, Li Z L, Suzuki D, Komatsu D D, Tsunogai U, Katayama A. Bioresour. Technol., 2014, 164: 232.
[49] Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S. Environ. Sci. Technol., 2008, 42: 6185.
[50] Thrash J C, Van Trump J I, Weber K A, Miller E, Achenbach L A, Coates J D. Environ. Sci. Technol., 2007, 41: 1740.
[51] Liu R H, Sheng G P, Sun M, Zang G L, Li W W, Tong Z H, Dong F, Lam M H W, Yu H Q. Appl. Microbiol. Biotechnol., 2011, 89: 201.
[52] Liu Y, Kim H, Franklin R R, Bond D R. ChemPhysChem., 2011, 12: 2235.
[1] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[2] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[3] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[4] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[5] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[6] 陈立香, 李祎頔, 田晓春, 赵峰. 革兰氏阳性电活性菌的电子传递及其应用[J]. 化学进展, 2020, 32(10): 1557-1563.
[7] 田晓春, 吴雪娥, 赵峰, 姜艳霞, 孙世刚. 电化学联用技术研究微生物的胞外电子传递机制[J]. 化学进展, 2018, 30(8): 1222-1227.
[8] 杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 水环境中ZVI/氧化剂体系及其电子迁移作用机制[J]. 化学进展, 2017, 29(4): 388-399.
[9] 杨世迎, 郑迪, 常书雅, 石超. 基于零价铝的氧化/还原技术在水处理中的应用[J]. 化学进展, 2016, 28(5): 754-762.
[10] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[11] 石婷, 陈铭, 陈雄平, 汪汲涛, 万锕俊, 赵一雷. 蛋白质巯基亚硝基化分子机制及其疾病相关性[J]. 化学进展, 2015, 27(5): 594-600.
[12] 许国贺, 李杰, 邓瑾妮, 殷绿, 郑朝晖, 丁小斌. 基于主客体识别的刺激响应型分子梭[J]. 化学进展, 2015, 27(12): 1732-1742.
[13] 王刚, 陈金伟, 朱世富, 张洁, 刘效疆, 王瑞林. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355.
[14] 刘利丹, 肖勇, 吴义诚, 陈必链, 赵峰. 微生物电化学系统电子中介体[J]. 化学进展, 2014, 26(11): 1859-1866.
[15] 王白云, 王晓玥, 王智文, 陈涛, 赵学明. 大肠杆菌氧化还原辅因子代谢工程[J]. 化学进展, 2014, 26(09): 1609-1618.