English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1751-1764 前一篇   后一篇

• 综述与评论 •

基于巯基点击反应与RAFT聚合的功能性聚合物合成

熊兴泉*, 唐忠科, 蔡雷   

  1. 华侨大学材料科学与工程学院 福建省高校功能材料重点实验室 厦门 361021
  • 收稿日期:2012-01-01 修回日期:2012-05-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 熊兴泉 E-mail:xxqluli@hqu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21004024) 、福建省自然科学基金项目(No.2011J01046)、福建省“高校杰出青年科研人才培育计划”(11FJPY02)和中央高校基本科研业务费“福建省杰出青年基金培育计划专项”(JB-SJ1002)资助

Synthesis of Functional Polymers via Combination of Thiol-Based Click Reactions with RAFT Polymerization

Xiong Xingquan, Tang Zhongke, Cai Lei   

  1. The Key Laboratory for Functional Materials of Fujian Higher Education, College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
  • Received:2012-01-01 Revised:2012-05-01 Online:2012-09-24 Published:2012-09-27
可逆加成-裂解链转移聚合(RAFT)由于单体适用面广、聚合条件温和、不受聚合方法的限制等特性, 已经成为活性合成聚合物的有效手段之一。点击化学(click chemistry)由于具有良好的选择性、模块性以及官能团耐受性等特点迅速成为许多研究领域,如药物、聚合物、功能材料等合成的有力工具,同时涌现出了多种基于巯基的点击反应。本文综述了近年来基于巯基的点击反应, 如巯基-烯、巯基-炔、巯基-异氰酸酯、巯基-环氧化物以及巯基-卤代烃等新型点击反应与RAFT聚合相结合在功能性聚合物的制备和修饰中的应用, 相信这两种手段的结合将在其中发挥积极的作用。
Due to wide range of monomers, mild polymerization conditions and various established polymerization methods, reversible-addition-fragmentation chain transfer (RAFT) polymerization is a useful living polymerization technique for the design and synthesis of polymers. Click chemistry has been demonstrated as a powerful tool in numerous scientific fields including drugs, polymers and functional materials because of its superior selectivity, modularity and functional group tolerance. At the same time, a series of novel thiol-based click reactions thus emerged. Herein, recent tactics that combine thiol-based click reactions, such as thiol-ene, thiol-yne, thiol-icocyanate, thiol-oxirane and thiol-halo with RAFT technique toward the construction and modification of useful functional polymers are reviewed. The combined thiol-based click reaction/RAFT technique is believed to play a positive role in the design and synthesis of functional polymers. Contents 1 Introduction
2 Combination of thiol-based click reactions with RAFT polymerization
2.1 Thiol-ene click chemistry and RAFT polymerization
2.2 Thiol-yne chemistry and RAFT polymerization
2.3 Thiol-icocyanate chemistry and RAFT polymerization
2.4 Thiol-oxirane chemistry and RAFT polymerization
2.5 Thiol-halo chemistry and RAFT polymerization
3 Combination of thiol-disulfide exchange reaction with RAFT polymerization
4 Conclusions and outlook

中图分类号: 

()
[1] Chiefari J, Chong Y K, Ercole F, Kristina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs C F, Moad C L, Moad J, Rizzardo E, Thang S H. Macromolecules, 1998, 1: 5559-5562
[2] Huang Y K, Hou T T, Cao X Q, Perrierb S, Zhao Y L. Polym. Chem., 2010, 1: 1615-1623
[3] Radu L C, Yang J Y, Kopecek J. Soft Matter, 2009, 5: 2347-2351
[4] 蔡远利 (Cai Y L), 卢礼灿 (Lu L C), 姜稳定(Jiang W D), 邓俊杰 (Deng J J), 李瑶华 (Li Y H), 石毅 (Shi Y). 化学进展 (Progress in Chemistry), 2010, 22: 1490-1498
[5] Schilli C M, Zhang M F, Rizzardo E, Thang S H, Chong Y K, Edwards K, Karlsson G, Müller A E H. Macromolecules, 2004, 37: 7861-7866
[6] Wu D X, Song X H, Tang T, Zhao H Y. J. Polym. Sci. Part A: Poly. Chem., 2010, 48: 443-453
[7] Wiss K T, Theatol P. J. Polym. Sci. Part A: Poly. Chem., 2010, 48: 4758-4767
[8] Zhang W D, Zhang W, Zhang Z B, Zhu J, Zhu X L. Macromol. Rapid Commun., 2010, 31: 1354-1358
[9] Ranjan R, Brittain W J. Macromolecules, 2007, 40: 6217-6223
[10] Ghosh S, Basu S, Thayumanavan S. Macromolecules, 2006, 39: 5595-5597
[11] Moad G, Chiefari J, Chong Y K, Krstina J, Mayadunne R T A, Postma A, Rizzardo E, Thang S H. Polym. Int., 2000, 49: 993-1001
[12] 杨正龙 (Yang Z L), 周丹 (Zhou D), 陈秋云(Chen Q Y). 化学进展 (Progress in Chemistry), 2011, 23: 2360-2367
[13] Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2005, 58: 379-410
[14] Moad G, Chong Y K, Postma A, Rizzardo E, Thang S H. Polymer, 2005, 46: 8458-8468
[15] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004-2021
[16] Rostovtsev V V, Green L G, Fokin V V, Sharpless K B. Angew. Chem. Int. Ed., 2002, 41: 2596-2599
[17] Morten M, Christian W T. Chem. Rev., 2008, 108: 2952-3015
[18] Wang Q, Hawker C. Chem. Asian J. 2011, 6: 2568-2069
[19] Hizal G, Tunca U, Sanyal A. J. Polym. Sci. Part A: Polym. Chem., 2011, 49: 4103-4120
[20] Tasdelen M A. Polym. Chem., 2011, 2: 2133-2145
[21] Abaee M S, Hamidi V, Mojtahedi M M. Ultrasonics Sonochem., 2008, 15: 823-827
[22] Fringuelli F, Piermatti O, Pizzo F, Vaccaro L. J. Org. Chem., 1999, 64: 6094-6096
[23] Katti A, Shimpi N, Roy S, Lu H B, Fabrizio E F, Dass A, Capadona L A, Leventis N. Chem. Mater., 2006, 18: 285-296
[24] 袁伟忠 (Yuan W Z), 张锦春 (Zhang J C), 魏静仁 (Wei J R). 化学进展 (Progress in Chemistry), 2011, 23: 760-771
[25] 邱素艳 (Qiu S Y), 高森 (Gao S), 林振宇(Lin Z Y), 陈国南 (Chen G N). 化学进展 (Progress in Chemistry), 2011, 23: 637-648
[26] 陈琳 (Chen L), 石乃恩 (Shi N E), 钱妍(Qian Y), 解令海 (Xie L H), 范曲立 (Fan Q L), 黄维(Huang W). 化学进展 (Progress in Chemistry), 2011, 22: 406-416
[27] Lowe A B, Hoyle C E, Bowman C N. J. Mater. Chem., 2010, 20: 4745-4750
[28] Agard N J, Prescher J A, Bertozzi C R A. J. Am. Chem. Soc., 2004, 126: 15046-15047
[29] Lutz J F. Angew. Chem. Int. Ed., 2008, 47: 2182-2184
[30] Qin A J, Tang L, Lam J W Y. Adv. Funct. Mater., 2009, 19: 1891-1900
[31] Lallana E, Fernandez M E, Riguera R. J. Am. Chem. Soc., 2009, 131: 5748-5750
[32] Jim C K W, Qin A, Lam J W Y. Adv. Funct. Mater., 2010, 20: 1319-1328
[33] Rutledge R D, Warner C L, Pittman J W, Addleman R S, Engelhard M, Chouyyok W, Warner M G. Langmuir, 2010, 26: 12285-12292
[34] Hoyle C E, Bowman C N. Angew. Chem. Int. Ed., 2010, 49: 1540-1573
[35] Kade M J, Burke D J, Hawker C J. J. Polym. Sci. Part A: Polym. Chem., 2010, 48: 743-750
[36] Hoogenboom R. Angew. Chem. Int. Ed., 2010, 49: 3415-3417
[37] Pounder R J, Stanford M J, Brooks P, Richards S P, Dove A P. Chem. Commun., 2008, 5158-5160
[38] Billiet L, Gok O, Dove A P, Sanyal A, Nguyen L T T, Prez F E D. Macromolecules, 2011, 44: 7874-7878
[39] Gindy M E, Ji S X, Hoye T R, Panagiotopoulos A Z, Prud’homme R K. Biomacromolecules, 2008, 9: 2705-2711
[40] Hensarling R M, Rahane S B, Leblanc A P, Sparks B J, White E M, Locklinb J, Patton D L. Polym. Chem., 2011, 2: 88-90
[41] Xu J T, Tao L, Boyer C, Lowe A B, Davis T P. Macromolecules, 2010, 43: 20-24
[42] Carioscia J A, Tansbury J W, Bowman C N. Polymer, 2007, 48: 1526-1532
[43] Helms B, Mynar J L, Hawker C J, Fréchet J M J. J. Am. Chem. Soc., 2004, 126: 15020-15021
[44] Quemener D, Davis T P, Barner-Kowollik C, Stenzel M H. Chem. Commun., 2006, 5051-5053
[45] Quemener D, Hellaye M, Bissett C, Davis T P, Barner-Kowollik C, Stenzel M H. J. Polym. Sci. Part A: Poly. Chem., 2008, 46: 155-173
[46] Harvison M A, Lowe A B. Macromol. Rapid Commun., 2011, 32: 779-800
[47] 陈鹏宇(Chen P Y), 曹亚(Cao Y). 高分子通报(Chinese Polymer Bulletin), 2011, 1: 24-32
[48] 陈忠春(Chen Z C), 唐建斌(Tang J B), 申有青(Shen Y Q), 王新平(Wang X P). 中国科学: 化学(Scientia Sinica Chimica), 2011, 41: 281-303
[49] 周莅霖 (Zhou L L), 袁金颖 (Yuan J Y), 蔡志楠 (Cai Z N), 洪啸吟 (Hong X Y). 化学进展(Progress in Chemistry), 2010, 22: 1799-1807
[50] Ossipov D A, Hilborn J. Macromolecules, 2006, 39: 1709-1718
[51] Shi G Y, Tang X Z, Pan C Y. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 2390-2401
[52] Vora A, Singh K, Webster D C. Polymer, 2009, 50: 2768-2774
[53] Zhang X W, Lian X M, Liu L, Zhang J, Zhao H Y. Macromolecules, 2008, 41: 7863-7869
[54] Willcock H, O’Reilly R K. Polym. Chem., 2010, 1: 149-157
[55] Roth P J, Boyer C, Lowe A B, Davis T P. Macromol. Rapid Commun., 2011, 32: 1123-1143
[56] Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B. Macromolecules, 2011, 44: 2489-2500
[57] 徐源鸿(Xu Y H), 熊兴泉(Xiong X Q), 蔡雷(Cai L), 唐忠科(Tang Z K), 叶章基(Ye Z J). 化学进展(Progress in Chemistry), 2012, 24: 385-394
[58] Becer C R, Hoogenboom R, Schubert U S. Angew. Chem. Int. Ed., 2009, 48: 4900-4908
[59] Slaney A M, Wright V A, Meloncelli P J, Harris K D, West L J, Lowary T L, Buriak J M. Appl. Mater. Interfaces, 2011, 3: 1601-1612
[60] Chan J W, Yu B, Hoyle C E, Lowe A B. Chem. Commun., 2008, 4959-4961
[61] Li Y, Benicewicz B C. Macromolecules, 2008, 41: 7986-7992
[62] Qiu X P, Winnik F M. Macromol. Rapid Commun., 2006, 27: 1648-1653
[63] Pan H Z, Yang J Y, Kope ková P, Kope ek J. Biomacromolecules, 2011, 12: 247-252
[64] Henry S M, Convertine A J W, Benoit D S, Hoffman A S, Stayton P S. Bioconjugate Chem., 2009, 20: 1122-1128
[65] Geng J, Mantovani G, Tao L, Nicolas J, Chen G J, Wallis R, Mitchell D A, Johnson B R G, Evans S D, Haddleton D M. J. Am. Chem. Soc., 2007, 129: 15156-15163
[66] Boyer C, Davis T P. Chem. Commun., 2009, 6029-6031
[67] Akimoto J, Nakayama M, Sakal K, Okano T. J. Polym. Sci. Part A: Poly. Chem., 2008, 46: 7127-7137
[68] Akimoto J, Nakayama M, Sakal K, Okano T. Biomacromolecules, 2009, 10: 1331-1336
[69] Wong L J, Kavallaris M, Bulmus V. Polym. Chem., 2011, 2: 385-393
[70] Isoda K, Kanayama N, Miyamoto D, Takarada T, Maeda M. Reactive & Functional Polymers, 2011, 71: 367-371
[71] Bays E, Tao L, Chang C W, Maynard H D. Biomacromolecules, 2009, 10: 1777-1781
[72] Li M, De P, Gondi S R, Sumerlin B S. Macromol. Rapid Commun., 2008, 29: 1172-1176
[73] Li M, De P, Li H, Sumerlin B S. Polym. Chem., 2010, 1: 854-859
[74] Heredia K L, Grover G N, Tao L, Maynard H D. Macromolecules, 2009, 42: 2360-2367
[75] Tao L, Kaddis C S, Ogorzalek Loo R R, Grover G N, Loo J A, Maynard H D. Macromolecules, 2009, 42: 8028-8033
[76] Heredia K L, Tao L, Grover G N, Maynard H D. Polym. Chem., 2010, 1: 168-170
[77] Boyer C, Granville A, Davisb T P, Bulmus V. J. Polym. Sci. Part A: Poly. Chem., 2009, 47: 3773-3794
[78] Huang X, Boyer C, Davisb T P, Bulmus V. Polym. Chem., 2011, 2: 1505-1512
[79] Scales C W, Convertine A T, McCormick C L. Biomacromolecules, 2006, 7: 1389-1392
[80] Chan J W, Yu B, Hoyle C E, Lowe A B. Polymer, 2009, 50: 3158-3168
[81] Stamenovic M M, Espeel P, Camp W V, Du Prez F E. Macromolecules, 2011, 44: 5619-5630
[82] Li G L, Xu L Q, Tang X Z, Neoh K G, Kang E T. Macromolecules, 2010, 43: 5797-5803
[83] Flores J D, Treat N J, Yorka A W, McCormick C L. Polym. Chem., 2011, 2: 1976-1985
[84] Huynh V T, Chen G J, Souza P, Stenzel M H. Biomacromolecules, 2011, 12: 1738-1751
[85] Chen G J, Amajjahe S, Stenzel M T. Chem. Commun., 2009, 1198-1200
[86] Fairbanks F D, Scott T S, Kloxin C J, Anseth K S, Bowman C B. Macromolecules, 2009, 42: 211-217
[87] Chan J W, Zhou H, Hoyle C E, Lowe A B. Chem. Mater., 2009, 21: 1579-1585
[88] Chan J W, Shin J W, Hoyle C E, Bowman C N, Lowe A B. Macromolecules, 2010, 43: 4937-4942
[89] Chen G J, Kumar J, Gregory A, Stenzel M H. Chem. Commun., 2009, 6291-6293
[90] Konkolewicz D, Gray-Weale A, Perrier S. J. Am. Chem. Soc., 2009, 131: 18075-18077
[91] Wang C, Ren P F, Huang X J, Wua J, Xu Z K. Chem. Commun., 2011, 3930-3932
[92] Huang Y G, Zeng Y H, Yang J W, Zeng Z H, Zhu F M, Chen X D. Chem. Commun., 2011, 7509-7511
[93] Minozzi M, Monesi A, Nanni D, Spagnolo P, Marchetti N, Massi A. J. Org. Chem., 2011, 76: 450-459
[94] 蔡雷 (Cai L), 熊兴泉 (Xiong X Q), 唐忠科(Tang Z K), 徐源鸿 (Xu Y H). 化工进展(Chemical Industry and Engineering Progress), 2011, 30: 1982-1989
[95] Yu B, Chan J W, Hoyle C E, Lowe A B. J. Polym. Sci. Polym. Chem. Ed., 2009, 47: 3544-3557
[96] Semsarilar M, Ladmiral V, Perrier S. Macromolecules, 2010, 43: 1438-1443
[97] Li Q, Wicks D A, Hoyle C E, Magers D H, McAlexander H R. Macromolecules, 2009, 42: 1824-1833
[98] Dyer E, Glenn J F, Lendrat E G. J. Org. Chem., 1960, 26: 2919-2925
[99] Klemm E, Stock C. Makromol. Chem., 1991, 192: 153-158
[100] Movassagh B, Soleiman-Beigi M. Monatshefte fur Chemie, 2008, 139: 137-140
[101] Hoyle C E, Loweb A B, Bowman C N. Chem. Soc. Rev., 2010, 39: 1355-1387
[102] Rahane S B, Hensarling R M, Sparks B J, Stafford C M, Patton D L. J. Mater. Chem., 2012, 22: 932-943
[103] Shin J, Matsushima H, Comer C M, Bowman C N, Hoyle C E. Chem. Mater., 2010, 22: 2616-2625
[104] Li H B, Yu B, Matsushima H, Hoyle C E, Lowe A B. Macromolecules, 2009, 42: 6537-6542
[105] Flores J D, Shin J, Hoyleab C E, McCormick C L. Polym. Chem., 2010, 1: 213-220
[106] Martina K, Caporaso M, Tagliapietra S, Heropoulos G, Rosati O, Cravotto G. Carbohydr. Res., 2011, 346: 2677-2682
[107] Yang M H, Yan G B, Zheng Y F. Tetrahedron Lett., 2008, 49: 6471-6474
[108] Fringuelli F, Pizzo F, Tortoioli S, Vaccaro L. Tetrahedron Lett., 2003, 44: 6785-6787
[109] Grazu V, Abian O, Mateo C, Batista-Viera F, Fernandez-Lafuente R, Guisan J M. Biotechnol. Bioeng., 2005, 90: 597-605
[110] Harvison M A, Davis T P, Lowe A B. Aust. J. Chem., 2011, 64: 992-1006
[111] Rosen B M, Lligads G, Hahn C, Percec V. J. Polym. Sci. Polym. Chem. Ed., 2009, 47: 3931-3939
[112] Rosen B M, Lligads G, Hahn C, Percec V. J. Polym. Sci. Polym. Chem. Ed., 2009, 47: 3940-3948
[113] Xu J T, Tao L, Boyer C, Lowe A B, Davis T P. Macromolecules, 2010, 43: 20-24
[114] Chen Y, Chen G J, Stenzel M H. Macromolecules, 2010, 43: 8109-8114
[115] Frand A R, Cuozzo J W, Kaiser C A. Trends Cell Biol., 2000, 10: 203-210
[116] Flanary S, Hoffman A S, Stayton P S. Bioconjugate Chem., 2009, 20: 241-248
[117] Ranucci E, Suardi M A, Annunziata R, Ferruti P, Chiellini F, Bartoli C. Biomacromolecules, 2008, 9: 2693-2704
[118] Goh Y K, Whittaker A K, Monteiro M J. J. Polym. Sci. Part A: Poly. Chem., 2007, 45: 4150-4153
[119] Vázquez-Dorbatt V, Tolstyka Z P, Chang C W, Maynard H D. Biomacromolecules, 2009, 10: 2207-2212
[120] Xu J T, Boyer C, Bulmus V, Davis T P. J. Polym. Sci. Part A: Poly. Chem., 2009, 47: 4302-4313
[121] Chang C W, Nguyen T H, Maynard H D. Macromol. Rapid Commun., 2010, 31: 1691-1695
[122] Boyer C, Liu J Q, Wong L J, Tippett M, Bulmus V, Davis T P. J. Polym. Sci. Part A: Poly. Chem., 2008, 46: 7207-7224
[123] 唐忠科 (Tang Z K), 熊兴泉 (Xiong X Q), 蔡雷 (Cai L), 徐源鸿 (Xu Y H). 药学学报(Acta Pharm. Sin.), 2011, 46: 1032-1038
[124] Liu J Q, Bulmus V, Herlambang D L, Barner-Kowollik C, Stenzel M H, Davis T P. Angew. Chem. Int. Ed., 2007, 46: 3099-3103
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[7] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[8] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[9] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[10] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[11] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[12] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[13] 刘江波, 王丽华, 左小磊. 基于DNA的细胞膜功能化[J]. 化学进展, 2019, 31(8): 1067-1074.
[14] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[15] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.