English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1656-1664 前一篇   后一篇

• 特约稿 •

基于电化学技术的microRNA生物传感器

闻艳丽1, 林美华1, 裴昊1, 鲁娜1,2, 樊春海*1   

  1. 1. 中国科学院上海应用物理研究所 上海 201800;
    2. 中国科学院上海微系统与信息技术研究所 上海 200050
  • 收稿日期:2012-03-01 修回日期:2012-06-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 樊春海 E-mail:fchh@ sinap.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.20725516)资助

Electrochemical-Based MicroRNA Sensors

Wen Yanli1, Lin Meihua1, Pei Hao1, Lu Na1,2, Fan Chunhai1   

  1. 1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
    2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2012-03-01 Revised:2012-06-01 Online:2012-09-24 Published:2012-09-27
MicroRNA(miRNA)是一种内源性的非编码单链RNA,通过与mRNA的3'端非翻译区(UTR)的不完全互补或完全互补结合抑制靶mRNA的翻译或促使靶mRNA的降解来调控基因的表达,参与细胞的增殖、凋亡、分化和代谢等重要过程。MiRNA表达的变化可以起到癌基因和抑癌基因的作用,是一种潜在的肿瘤标志物,因此,miRNA的检测技术引起了人们的关注。由于电化学检测方法具有灵敏、快速、低成本和低能耗等特点,研究者广泛开展了应用电化学技术来发展miRNA检测的研究。本文将对基于电化学技术的miRNA检测方法进行综述。
MicroRNAs (miRNAs) are endogenous, non-coding single-stranded RNAs that regulate gene expression via degradation or translational repression of their targeted mRNAs. MiRNAs control cell growth, differentiation and apoptosis at a post-transciptional level. Recent evidence has shown that impaired miRNAs expression correlates with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes, which provides a type of promising biomarkers for cancer diagnositics. Therefore, more and more researchers are interested in developing novel miRNAs detection methods. Because electrochemical methods are rapid, sensitive and electrochemical detectors are inexpensive and portable, there has been intense interest in developing new electrochemical sensors for miRNA detection. Here, studies on electrochemical miRNA biosensors are reviewed which contains the principle of DNA biosensor, several signal amplification technologies for biosensor, design of probe for miRNA biosensor and existing electrochemical methods for miRNA detection. Contents 1 Introduction
2 Principle and signal amplification technology for DNA biosensors
3 Design of capture probe for miRNA biosensor
3.1 Locked nucleic acids (LNA) probe
3.2 Peptide nucleic acids (PNA) probe
3.3 DNA nanostructural probe
4 MiRNA direct labeled detection technology
5 Label-free miRNA detection technology
5.1 Direct electrochemistry of miRNA based detection
5.2 Enzyme-based electrocatalytic amplification detection
5.3 Nano-electrode based detection
6 Conclusions and outlook

中图分类号: 

()
[1] Thévenot D R, Toth K, Durst R A, Wilson G S. Biosens. Bioelectron., 2001, 16: 121-131
[2] Lee R C, Feinbaum R L, Ambros V. Cell, 1993, 75: 843-854
[3] Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G. Nature, 2000, 403: 901-906
[4] Bartel D P. Cell, 2004, 116: 281-297
[5] Esquela-Kerscher A, Slack F J. Nat. Rev. Cancer, 2006, 6: 259-269
[6] Kozomara A, Griffiths-Jones S. Nucleic Acids Res., 2011, 39: D152-D157
[7] Calin G A, Dumitru C D, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K. Proc. Natl. Acad. Sci.USA, 2002, 99: 15524-15529
[8] Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. Cancer Res., 2005, 65: 9628-9632
[9] Wang Q Z, Xu W, Habib N, Xu R A. Curr. Cancer Drug Targets, 2009, 9: 572-594
[10] Yu L, Todd N W, Xing L, Xie Y, Zhang H, Liu Z, Fang H B, Zhang J, Katz R L, Jiang F. Int. J. Cancer, 2010, 127: 2870-2878
[11] Esquela-Kerscher A, Trang P, Wiggins J F, Patrawala L, Cheng A G, Ford L, Weidhaas J B, Brown D, Bader A G, Slack F J. Cell Cycle, 2008, 7: 759-764
[12] Tavazoie S F, Alarcon C, Oskarsson T, Padua D, Wang Q Q, Bos P D, Gerald W L, Massague J. Nature, 2008, 451: 147-152
[13] Blenkiron C, Goldstein L D, Thorne N P, Spiteri I, Chin S F, Dunning M J, Barbosa-Morais N L, Teschendorff A E, Green A R, Ellis I O, Tavare S, Caldas C, Miska E A. Genome Biol., 2007, 8: R214-R214
[14] Iorio M V, Ferracin M, Liu C G, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M. Cancer Res., 2005, 65: 7065-7070
[15] Findlay V J. Open Cancer J., 2010, 3: 55-61
[16] Ma L, Teruya-Feldstein J, Weinberg R A. Nature, 2007, 449: 682-688
[17] Pang Y X, Young C Y F, Yuan H Q. Acta Biochim. Biophys. Sin., 2010, 42: 363-369
[18] Mitchell P S, Parkin R K, Kroh E M, Fritz B R, Wyman S K, Pogosova-Agadjanyan E L, Peterson A, Noteboom J, O’Briant K C, Allen A. Proc. Natl. Acad. Sci. USA, 2008, 105: 10513-10518
[19] Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R. Oncology-basel, 2007, 72: 397-402
[20] Ju J. Bioanalysis, 2010, 2: 901-906
[21] Michael M Z, O’Connor S M, Pellekaan N G V, Young G P, James R J. Mol. Cancer Res., 2003, 1: 882-891
[22] Kong W, Zhao J J, He L, Cheng J Q. J. Cell. Physiol., 2009, 218: 22-25
[23] Wark A W, Lee H J, Corn R M. Angew. Chem. Int. Ed., 2008, 47: 644-652
[24] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Science, 2001, 294: 853-858
[25] Liang R Q, Li W, Li Y, Tan C, Li J X, Jin Y X, Ruan K C. Nucleic Acids Res., 2005, 33: e17-e17
[26] Miska E A, Alvarez-Saavedra E, Townsend M, Yoshii A, estan N, Rakic P, Constantine-Paton M, Horvitz H R. Genome Biol., 2004, 5: R68-R68
[27] Thomson J M, Parker J, Perou C M, Hammond S M. Nat. Methods, 2004, 1: 47-53
[28] Fang S, Lee H J, Wark A W, Corn R M. J. Am. Chem. Soc., 2006, 128: 14044-14046
[29] Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R. Nucleic Acids Res., 2005, 33: e179-e179
[30] Doyle P S, Chapin S C. Anal. Chem., 2011,83:7179-7185
[31] Cheng Y Q, Zhang X, Li Z P, Jiao X X, Wang Y C, Zhang Y L. Angew. Chem. Int. Ed., 2009, 48: 3268-3272
[32] Zhou Y, Huang Q, Gao J, Lu J, Shen X, Fan C. Nucleic Acids Res., 2010, 38: e156-e156
[33] Cissell K A, Rahimi Y, Shrestha S, Hunt E A, Deo S K. Anal. Chem., 2008, 80: 2319-2325
[34] Driskell J D, Seto A G, Jones L P, Jokela S, Dluhy R A, Zhao Y P, Tripp R A. Biosens. Bioelectron., 2008, 24: 917-922
[35] Driskell J D, Tripp R A. Chem. Commun., 2010, 46: 3298-3300
[36] Nuovo G J. Methods, 2010, 52: 307-315
[37] Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndi M. Nature Nanotech., 2010, 5: 807-814
[38] Venkatesan B M, Bashir R. Nature Nanotech., 2011, 6: 615-624
[39] Junhui Z, Hong C, Ruifu Y. Biotechnol. Adv., 1997, 15: 43-58
[40] 张炯(Zhang J),万莹( Wan Y), 王丽华(Wang L H),宋世平( Song S P), 樊春海(Fan C H). 化学进展(Prog. Chem.), 2007, 19: 1576-1584
[41] Ellington A D, Szostak J W. Nature, 1990, 346: 818-822
[42] Tuerk C, Gold L. Science, 1990, 249: 505-510
[43] Wen Y Q, Peng C, Li D, Zhuo L, He S J, Wang L H, Huang Q, Xu Q H, Fan C H. Chem. Commun., 2011, 47: 6278-6280
[44] Wen Y Q, Xing F F, He S J, Song S P, Wang L H, Long Y T, Li D, Fan C H. Chem. Commun., 2010, 46: 2596-2598
[45] Liu J W, Lee J H, Lu Y. Anal. Chem., 2007, 79: 4120-4125
[46] Zhu C F, Wen Y Q, Li D, Wang L H, Song S P, Fan C H, Willner I. Chem-Eur. J., 2009, 15: 11898-11903
[47] Xiao Y, Piorek B D, Plaxco K W, Heeger A J. J. Am. Chem. Soc., 2005, 127: 17990-17991
[48] Zhou L, Ou L J, Chu X, Shen G L, Yu R Q. Anal. Chem., 2007, 79: 7492-7500
[49] Cho H, Baker B R, Wachsmann-Hogiu S, Pagba C V, Laurence T A, Lane S M, Lee L P, Tok J B H. Nano Lett., 2008, 8: 4386-4390
[50] Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W. J. Proteome Res., 2008, 7: 2133-2139
[51] Pu Y, Zhu Z, Liu H, Zhang J, Liu J, Tan W. Anal. Bioanal. Chem., 2010, 397: 3225-3233
[52] Lao R J, Song S P, Wu H P, Wang L H, Zhang Z Z, He L, Fan C H. Anal. Chem., 2005, 77: 6475-6480
[53] Xu H, Wu H P, Huang F, Song S P, Li W X, Cao Y, Fan C H. Nucleic Acids Res., 2005, 33: e83-e83
[54] Zhang J, Lao R J, Song S P, Yan Z Y, Fan C H. Anal. Chem., 2008, 80: 9029-9033
[55] Zhang J, Wang L H, Pan D, Song S P, Boey F Y C, Zhang H, Fan C H. Small, 2008, 4: 1196-1200
[56] Zhang L Y, Sun H, Li D, Song S, Fan C H, Wang S. Macromol. Rapid Commun., 2008, 29: 1626-1626
[57] Huang Y Q, Liu X F, Fan Q L, Wang L H, Song S P, Fan C H, Huang W. Biosens. Bioelectron., 2009, 24: 2973-2978
[58] He S J, Song B, Li D, Zhu C F, Qi W P, Wen Y Q, Wang L H, Song S P, Fang H P, Fan C H. Adv. Funct. Mater., 2010, 20: 453-459
[59] Fan C H, Plaxco K W, Heeger A J. Proc. Natl. Acad.Sci.USA, 2003, 100: 9134-9137
[60] Chen X, Wang Y F, Liu Q, Zhang Z Z, Fan C H, He L. Angew. Chem. Int. Ed., 2006, 45: 1759-1762
[61] Li J, Liu X F, Xu H, Song S P, Zhao Y, Fan C H. Rare Metal Mat. Eng., 2006, 35: 274-276
[62] Liu G, Wan Y, Gau V, Zhang J, Wang L H, Song S P, Fan C H. J. Am. Chem. Soc., 2008, 130: 6820-6825
[63] Pei H, Lu N, Wen Y L, Song S P, Liu Y, Yan H, Fan C H. Adv. Mater., 2010, 22: 4754-4578
[64] Pei H, Wan Y, Li J, Hu H Y, Su Y, Huang Q, Fan C H. Chem. Commun., 2011, 47: 6254-6256
[65] Wen Y L, Pei H, Wan Y, Su Y, Huang Q, Song S P, Fan C H. Anal. Chem., 2011, 83: 7418-7423
[66] Ge Z L, Pei H, Wang L H, Song S P, Fan C H. Science China-Chemistry, 2011, 54: 1273-1276
[67] Zhang J, Song S P, Zhang L Y, Wang L H, Wu H P, Pan D, Fan C H. J. Am. Chem. Soc., 2006, 128: 8575-8580
[68] Wan Y, Zhang J, Liu G, Pan D, Wang L H, Song S P, Fan C H. Biosens. Bioelectron., 2009, 24: 1209-1212
[69] Liu X F, Tang Y L, Wang L H, Zhang J, Song S P, Fan C H, Wang S. Adv. Mater., 2007, 19: 1471-1474
[70] Pu F, Huang Z, Hu D, Ren J, Wang S, Qu X. Chem. Commun., 2009, 45: 7357-7359
[71] Zhang L Y, Sun H, Li D, Song S, Fan C H, Wang S. Macromol. Rapid Commun., 2008, 29: 1489-1494
[72] Liu G, Wan Y, Gau V, Zhang J, Wang L H, Song S P, Fan C H. J. Am. Chem. Soc., 2008, 130: 6820-6825
[73] Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Science, 1997, 277: 1078-1081
[74] Zheng X X, Liu Q, Jing C, Li Y, Li D, Luo W J, Wen Y Q, He Y, Huang Q, Long Y T, Fan C H. Angew. Chem. Int. Ed., 2011, 50: 11994-11998
[75] Zhang J, Wang L H, Zhang H, Boey F, Song S P, Fan C H. Small, 2010, 6: 201-204
[76] Liang Z Q, Zhang J, Wang L H, Song S P, Fan C H, Li G X. Int. J. Mol. Sci., 2007, 8: 526-532
[77] Li J, Song S P, Liu X F, Wang L H, Pan D, Huang Q, Zhao Y, Fan C H. Adv. Mater., 2008, 20: 497-500
[78] Storhoff J J, Marla S S, Bao P, Hagenow S, Mehta H, Lucas A, Garimella V, Patno T, Buckingham W, Cork W. Biosens. Bioelectron., 2004, 19: 875-883
[79] Chen P, Pan D, Fan C H, Chen J H, Huang K, Wang D F, Zhang H L, Li Y, Feng G Y, Liang P J, He L, Shi Y Y. Nature Nanotechnol. 2011, 6: 639-644
[80] Li F, Zhang J, Cao X N, Wang L H, Li D, Song S P, Ye B C, Fan C H. Analyst, 2009, 134: 1355-1360
[81] Li H K, Huang J H, Lv J H, An H J, Zhang X D, Zhang Z Z, Fan C H, Hu J. Angew. Chem. Int. Ed., 2005, 44: 5100-5103
[82] Li J, Song S P, Li D, Su Y, Huang Q, Zhao Y, Fan C H. Biosens. Bioelectron., 2009, 24: 3311-3315
[83] Liu G, Sun C F, Li D, Song S P, Mao B W, Fan C H, Tian Z Q. Adv. Mater., 2010, 22: 2148-2150
[84] Li J, Wan Y, Wang L H, Zhu X H, Su Y, Li D, Zhao Y, Huang Q, Song S P, Fan C H. Anal. Chim. Acta, 2011, 702: 114-119
[85] Zhang J, Song S P, Wang L H, Pan D, Fan C H. Nat. Protoc., 2007, 2: 2888-2895
[86] Koshkin A A, Singh S K, Nielsen P, Rajwanshi V K, Kumar R, Meldgaard M, Olsen C E, Wengel J. Tetrahedron, 1998, 54: 3607-3630
[87] Petersen M, Wengel J. Trends Biotechnol., 2003, 21: 74-81
[88] Elayadi A N, Braasch D A, Corey D R. Biochemistry, 2002, 41: 9973-9981
[89] Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik A E, Hentze M W, Muckenthaler M U. RNA, 2006, 12: 913-920
[90] Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Nucleic Acids Res., 2004, 32: e175-e175
[91] Lee J M, Jung Y. Angew. Chem. Int. Ed., 2011, 50: 12487-12490
[92] Yin H, Zhou Y, Zhang H, Meng X, Ai S. Biosens. Bioelectron., 2012, 33: 247-253
[93] Singh R P, Oh B K, Choi J W. Bioelectrochemistry, 2010, 79: 153-161
[94] Wojciechowski F, Hudson E, Robert H. Curr. Top. Med. Chem., 2007, 7: 667-679
[95] Fan Y, Chen X, Trigg A D, Tung C, Kong J, Gao Z. J. Am. Chem. Soc., 2007, 129: 5437-5443
[96] Yang H, Hui A, Pampalakis G, Soleymani L, Liu F F, Sargent E H, Kelley S O. Angew. Chem. Int. Ed., 2009, 48: 8461-8464
[97] Seeman N. Nature, 2003, 421: 427-431
[98] Yan H. Science, 2004, 306: 2048-2049
[99] Winfree E, Liu F, Wenzler L A, Seeman N C. Nature, 1998, 394: 539-544
[100] He Y, Ye T, Su M, Zhang C, Ribbe A E, Jiang W, Mao C D. Nature, 2008, 452: 198-201
[101] Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310: 1661-1665
[102] Goodman R P, Berry R M, Turberfield A J. Chem. Commun., 2004,1372-1373
[103] Mitchell N, Schlapak R, Kastner M, Armitage D, Chrzanowski W, Riener J, Hinterdorfer P, Ebner A, Howorka S. Angew. Chem. Int. Ed., 2009, 48: 525-527
[104] Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C. Adv. Mater., 2010, 22: 4754-4758
[105] Gao Z Q, Yang Z C. Anal. Chem., 2006, 78: 1470-1477
[106] Gao Z, Yu Y H. Sensor. Actuat. B-Chem., 2007, 121: 552-559
[107] Gao Z, Yu Y H. Biosens. Bioelectron., 2007, 22: 933-940
[108] Peng Y F, Gao Z Q. Anal. Chem., 2011, 83: 820-827
[109] Singhal P, Kuhr W G. Anal. Chem., 1997, 69: 4828-4832
[110] Wang H S, Ju H X, Chen H Y. Electroanalysis, 2001, 13: 1105-1109
[111] Lusi E A, Passamano M, Guarascio P, Scarpa A, Schiavo L. Anal. Chem., 2009, 81: 2819-2822
[112] PohlmannC, Sprinzl M. Anal. Chem., 2010, 82: 4434-4440
[113] Zhang G J, Chua J H, Chee R E, Agarwal A, Wong S M. Biosens. Bioelectron., 2009, 24: 2504-2508
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[4] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[5] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[6] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[7] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[8] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[9] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[10] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[11] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[12] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[13] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[14] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[15] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.