English
新闻公告
More
化学进展 2012, Vol. Issue (9): 1646-1655 前一篇   后一篇

• 特约稿 •

金属-有机骨架材料用于废水处理

童敏曼, 赵旭东, 解丽婷, 刘大欢*, 阳庆元, 仲崇立*   

  1. 北京化工大学有机无机复合材料国家重点实验室 北京 100029
  • 收稿日期:2012-04-01 修回日期:2012-06-01 出版日期:2012-09-24 发布日期:2012-09-27
  • 通讯作者: 刘大欢, 仲崇立 E-mail:liudh@mail.buct.edu.cn; zhongcl@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(No. 21136001)和国家自然科学基金委创新群体项目(No.21121064)资助

Treatment of Waste Water Using Metal-Organic Frameworks

Tong Minman, Zhao Xudong, Xie Liting, Liu Dahuan, Yang Qingyuan, Zhong Chongli   

  1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2012-04-01 Revised:2012-06-01 Online:2012-09-24 Published:2012-09-27
废水中的各种有害物质常常具有生物毒性或致癌性,因此如何高效、节能地处理水体污染是一个亟待解决的重要问题。金属-有机骨架材料(metal-organic frameworks, MOFs)是一种新型纳米多孔材料,具有种类多样性、结构可设计性与可调控性、高比表面积及良好的热稳定性等优点,已成为当前化学、材料学科的一个研究热点, 在多个领域显示出潜在的应用前景,尤其是在分离方面。与气相分离相比,MOFs用于液相分离的研究较少。本文综述了近年来MOFs用于含有染料、药物、醇、芳香族化合物、重金属离子及其他离子的废水处理的研究进展,重点剖析了MOFs的孔结构、骨架电荷及功能性对分离效果的影响,并结合本课题组的研究工作,对这种新型多功能材料在水处理方面的前景和今后的研究重点作了展望。
Harmful compounds and heavy metal ions in waste water are often biologically toxic and/or carcinogenic. Thus, removal of these substances from waste water in an efficient way has drawn considerable social and scientific concern in recent years. Metal-organic frameworks (MOFs), commonly recognized as “soft” analogues of zeolites, is a new class of nanoporous materials with various topologies, adjustable pore size, controllable properties, large surface area, as well as acceptable thermal stability. MOFs have received much attention in the fields of chemistry and materials science and have shown potential applications with well performance compared to the traditional porous materials including zeolites and activated carbons, especially in separation. Though gas phase separation using MOFs has been extensively studied and reviewed, studies on liquid phase separation are scarce. This review introduces the research progress on waste water treatment using MOFs, in which different harmful substances such as organic dyes, pharmaceuticals, alcohols, aromatic compounds, heavy metal ions and inorganic ions are included. Detailed analysis of the effect of the pore structure, framework charge and functional group on separation is provided. In addition, future studies that should be focused in this field are proposed based on the existed works combined with the research results in our group. Contents 1 Introduction
2 Metal-organic frameworks for waste water treatment
2.1 Removal of organics
2.2 Removal of inorganics
3 Conclusions and outlook

中图分类号: 

()
[1] Zümriye A. Process Biochem., 2005, 40: 997-1026
[2] 崔英杰(Cui Y J), 杨世迎(Yang S Y), 王萍(Wang P), 贾永刚(Jia Y G). 化学进展(Progress in Chemistry), 2008, 20(7/8): 1196-1201
[3] 苑宝玲(Yuan B L), 王洪杰(Wang H J). 水处理新技术原理与应用(Principle and Application of New Water Treatment Technology).北京:化学工业出版社(Beijing:Chemical Industry Press), 2006. 43-44
[4] Pophali G R, Hedau S, Gedam N, Rao N N, Nandy T. J. Hazard. Mater., 2011, 189: 273-277
[5] Huebra M, Elizalde M P, Almela A. Hydrometallurgy, 2003, 68: 33-42
[6] Crini G. Bioresour. Technol., 2006, 97: 1061-1085
[7] Sharma P, Kaur H, Sharma M, Sahore V. Environ. Monit. Assess, 2011, 183: 151-195
[8] Lataye D H, Mishra I M, Mall I D. Ind. Eng. Chem. Res., 2006, 45: 3934-3943
[9] Zhang S, Shao T, Kose H S, Karanfìl T. Environ. Sci. Technol., 2010, 44: 6377-6383
[10] 阳庆元(Yang Q Y), 刘大欢(Liu D H), 仲崇立(Zhong C L). 化工学报(Journal of Chemical Industry and Engineering),2009, 60: 805-819
[11] Liu D H, Zhong C L. J. Mater. Chem., 2010, 20: 10308-10318
[12] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi O M. Science, 2002, 295: 469-472
[13] Gándara F, Gomez-Lor B, Gutiérrez-Puebla E, Iglesias M, Monge M A, Proserpio D M, Snejko N. Chem. Mater., 2008, 20: 72-76
[14] Bai J F, Leiner E, Scheer M. Angew. Chem. Int. Ed., 2002, 41: 783-786
[15] Yaghi O M, Li H L, Davic C, Richardson D,Groy T L. Acc. Chem. Res., 1998, 31: 474-484
[16] Cychosz K A, Ahmad R, Matzger A J. Chem. Sci., 2010, 1: 293-302
[17] Young L, Rivera M. Water Res., 1985, 19: 1325-1332
[18] Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. Water Res., 2009, 43: 363-380
[19] Rubio J, Souza M L, Smith R W. Miner. Eng., 2002, 15: 139-155
[20] Robinson T, McMullan G, Marchant R, Nigam P. Bioresour. Technol., 2001, 77: 247-255
[21] Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. J. Hazard. Mater., 2007, 148: 229-240
[22] Chen S, Zhang J, Zhang C, Yue Q, Li Y, Li C. Desalination, 2010, 252: 149-156
[23] Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. J. Am. Chem. Soc., 2009, 131: 15834-15842
[24] Cychosz K A, Matzger A J. Langmuir, 2010, 26: 17198-17202
[25] Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G. Angew. Chem. Int. Ed., 2006, 45: 5974 -5978
[26] Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G. J. Am. Chem. Soc., 2008, 130: 6774-6780
[27] Kathryn M L, Pashow T, Rocca J D, Xie Z G, Tran S, Lin W B. J. Am. Chem. Soc., 2009, 131: 14261-14263
[28] Huxford R C, Rocca J D, Lin W B. Curr. Opin. Chem. Biol., 2010, 14: 262-268
[29] Sun C Y, Qin C, Wang C G, Su Z M, Wang S, Wang X L, Yang G S, Shao K Z, Lan Y Q, Wang E B. Adv. Mater., 2011, 23: 5629-5632
[30] Haque E, Lee J E, Jang I T, Hwang Y K, Chang J S, Jegal J, Jhung S H. J. Hazard. Mater., 2010, 181: 535-542
[31] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Mirgiolaki I. Science, 2005, 309: 2040-2042
[32] Haque E, Jun J W, Jhung S H. J. Hazard. Mater., 2011, 185: 507-511
[33] Yoon J H, Choi S B, Oh Y J, Seo M J, Jhon Y H, Lee T B, Kim D, Choi S H, Kim J. Catal. Today, 2007, 120: 324-329
[34] Sudik A C, C té A P, Yaghi O M. Inorg. Chem., 2005, 44: 2998-3000
[35] Rocher V, Siaugue J M, Cabuil V, Bee A. Water Res., 2008, 42: 1290-1298
[36] Pu F, Liu X, Xu B L, Ren J S, Qu X G. Chem. Eur. J., 2012, 18: 4322-4328
[37] Mahata P, Madras G, Natarajan S. J. Phys. Chem. B, 2006, 110: 13759-13768
[38] Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G. J. Hazard. Mater., 2011, 190: 945-951
[39] El-sharkawy R G, El-din A S B, Etaiw S H E. Spectrochimica Acta Part A, 2011, 79: 1969-1975
[40] Julien C S R, Tom R, Vincent V H, Perre S, Duerinck T, Maes M, DeVos D, Gobechiya E, Christine E A K, Gino V B, Joeri F M, Denayer J. Chem. Sus. Chem., 2011, 4: 1074-1077
[41] Kaye S S, Dailly A P, Yaghi O M, Long J R. J. Am. Chem. Soc., 2007, 129: 14176-14177
[42] Park K S, Cote P, Choi J Y, Huang R J. Proc. Natl. Acad. Sci. USA, 2006, 103: 10186-10191
[43] Kusgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S. Microporous Mesoporous Mater., 2009, 120: 325-330
[44] Moggach S, Benett T. Angew. Chem., 2009, 121: 7221-7223
[45] Chen B L, Ji Y Y, Xue M, Frank R, Fronczek J. Inorg. Chem., 2008, 47: 5543-5545
[46] Maes M, Schouteden S, Alaerts L, Depla D, De Vos D E. Phys. Chem. Chem. Phys., 2011, 13: 5587-5589
[47] Serre C, Bourrelly S, Vimont A, Ramsahye N, Maurin G, Llewellyn P, Daturi M, Filinchuck Y, Leynaud O, Barnes P, Férey G. Adv. Mater., 2007, 19: 2246-2251
[48] Jhung S H, Lee J H, Yoon J W, Serre C, Férey G, Chang J S. Adv. Mater., 2007, 19: 121-124
[49] Pan L, Parker B, Huang X, Olson D H, Lee J, Li J. J. Am. Chem. Soc., 2006, 128: 4180-4181
[50] Trens P, Tanchoux N, Papineschi P M, Maldonado D, Renzo F, Fajula F. Microporous Mesoporous Mater., 2005, 86: 354-363
[51] Li G, Zhu C F, Xi X B, Cui Y. Chem. Commun., 2009, 2118-2120
[52] Dinesh V P, Somayajulu R P B, Dangi G P, Tayade R J, Somani R S, Bajaj H C. Ind. Eng. Chem. Res., 2011, 50: 10516-10524
[53] Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G. Chem. Eur. J., 2004, 10: 1373-1382
[54] Erdem E, Karapinar N, Donat R. J. Colloid Interface Sci., 2004, 280: 309-314
[55] Babel S, Kurniawan T A. J. Hazard. Mater., 2003, 97: 219-243
[56] Amor Z, Bariou B, Mameri N, Taky M, Nicolas S, Elmidaoui A. Desalination, 2001, 133: 215-223
[57] Osathaphan K, Tiyanont P, Yngard R A,Sharma V K. Water, Air, Soil Pollut., 2011, 219: 527-534
[58] Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 196: 36-43
[59] He J, Yee K K, Xu Z T, Allen D H, Stephen S C, Che C M. Chem. Mater., 2011, 23: 2940-2947
[60] Nalaparaju A, Jiang J W. J. Phys. Chem. C, 2012, 116: 6925-6931
[61] Liu Q K, Ma J P, Dong Y B. Chem. Commun., 2011, 47: 7185-7187
[62] Hashemi L, Morsali A. CrystEngComm., 2011, 14: 779-781
[63] Cui P, Ren L J, Chen Z, Hu H C, Zhao B, Shi W, Cheng P. Inorg. Chem., 2012, 51: 2303-2310
[64] Custelcean R, Haverlock T J, Moyer B A. Inorg. Chem., 2006, 45: 6446-6452
[65] Custelcean R, Sellin V, Moyer B A. Chem. Commun., 2007, 1541-1543
[66] Wong K L, Law G L, Yang Y Y, Wong W T. Adv. Mater., 2006, 18: 1051-1054
[67] Chen B L, Wang L B, Zapata F, Qian G D, Lobkovsky E B. J. Am. Chem. Soc., 2008, 130: 6718-6719
[68] Gong Y, Qin J B, Wu T, Li J H, Yang L, Cao R. Dalton Trans., 2012, 41: 1961-1970
[69] Ma J P, Yu Y, Dong Y B. Chem. Commun., 2012, 48: 2946-2948
[70] Yang Q Y, Zhong C L. J. Phys. Chem. B, 2006, 110: 17776-17783
[71] Yang Q Y, Xue C Y, Zhong C L, Chen J F. AIChE J., 2007, 53: 2832-2840
[72] Liu B, Yang Q Y, Xue C Y, Zhong C L, Chen B H, Smit B. J. Phys. Chem. C, 2008, 112: 9854-9860
[73] Xu Q, Liu D H, Yang Q Y, Zhong C L, Mi J G. J. Mater. Chem., 2010, 20: 706-714
[74] Huang H L, Zhang W J, Liu D H, Liu B, Chen G J, Zhong C L. Chem. Eng. Sci., 2011, 66: 6297-6305
[75] Yot P G, Ma Q T, Haines J, Yang Q Y, Ghoufi A, Devic T, Serre C, Dmitriev V, Férey G, Zhong C L, Maurin G. Chem. Sci., 2012, 3: 1100-1104
[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[3] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[4] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[5] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[6] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[7] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[8] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[9] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[10] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[11] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[12] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[13] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[14] 高凤凤, 杨言言, 杜晓, 郝晓刚, 官国清, 汤兵. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351.
[15] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
阅读次数
全文


摘要

金属-有机骨架材料用于废水处理