English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1737-1746 前一篇   后一篇

• 综述与评论 •

抗氧化能力评价方法

马小媛1,2, 钱卫平1*   

  1. 1. 东南大学生物科学与医学工程学院 生物电子学国家重点实验室 南京 210096;
    2. 东南大学化学化工学院 南京 210096
  • 收稿日期:2010-10-01 修回日期:2011-01-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 钱卫平 E-mail:wqian@seu.edu.cn
  • 基金资助:

    国家自然科学基金重大研究计划项目 (No.90923010)、国家重点基础研究发展计划(973)项目(No.2010CB933902)、国家科技部国际合作项目(No.2008DFB50060)和教育部高等学校博士学科点专项科研基金 (No.20090092110026)资助

Methods to Determine Antioxidant Capacity

Ma Xiaoyuan1,2, Qian Weiping1*   

  1. 1. State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
    2. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
  • Received:2010-10-01 Revised:2011-01-01 Online:2011-08-24 Published:2011-07-25

生物体系中的氧化与抗氧化系统失衡会导致氧化应激,被认为同诸多疾病的发病机理密切相关,具有抗氧化能力的物质能有效抵御氧化应激的有害损伤。本文介绍了氧化应激的有关概念,包括活性氧物种、抗氧化剂、氧化损伤等,并重点针对生物体内和体外的各种活性氧、活性氮物种清除能力检测方法以及本研究小组最新发展的利用金纳米壳复合材料和其他小组基于纳米材料的评价方法进行了综述与比较,包括化学原理、优缺点及实际应用等。简要分析了目前检测方法存在的问题并对未来标准化检测方法进行了展望。

The imbalance between oxidants and antioxidants in biological systems may lead to oxidative stress, which is associated with the pathogenesis of several human diseases. The putative protective effects of antioxidants against these oxidative-induced reactions have received increasing attention. Here, the concept of oxidative stress is introduced, including reactive oxygen species, antioxidants, oxidative injury, etc. Furthermore, the methods most widely used for the determination of reactive oxygen species/reactive nitrogen species scavenging capacity as well as the newly developed evaluation assay using gold nanoshells composites by our research group and other methods based on nanomaterials are evaluated, presenting the general principles, recent applications, and their strengths and limitations. Finally, current problems and the prospect of the standardized analytical methods are proposed.

Contents
1 Introduction
2 Scavenging capacity assays against specific reactive oxygen species/reactive nitrogen species
2.1 ROO· scavenging capacity assay
2.2 O2·- scavenging capacity assay
2.3 H2O2 scavenging capacity assay
2.4 HO· scavenging capacity assay
2.5 HOCl scavenging capacity assay
2.6 1O2 scavenging capacity assay
2.7 NO· scavenging capacity assay
2.8 ONOO- scavenging capacity assay
3 Scavenging capacity assays against stable, non-biological radicals and evaluation of total reduction capacity
3.1 Trolox equivalent antioxidant capaity assay
3.2 DPPH radical scavenging capacity assay
3.3 Ferric reducing antioxidant power assay
3.4 Total reducing capacity estimated by electrochemical methods
4 Nanoparticles-based antioxidant capacity assay
4.1 Antioxidant capacity assay based on the growth process of gold nanoshells
4.2 Antioxidant capacity assay utilizing gold nanoparticles
4.3 Electrochemiluminescence sensors for HO· scavenging capacity assay based on CdSe quantum dots
4.4 Nanosensor for oxidative stress determination utilizing polymer spheres
4.5 Nanomaterials as antioxidants against harmful oxidative stress responses
4.6 Nanomaterials induced oxidative damage
5 Conclusions and outlook

中图分类号: 

()

[1] Harman D J. Gerontol., 1956, 2: 298-300
[2] Valko M, Leibfritz D, Moncol J, Cronin M T D, Mazur M, Telser J. Int. J. Biochem. Cell Biol., 2007, 39: 44-84
[3] Halliwell B. Adv. Pharmacol., 1996, 38: 3-20
[4] Huang D J, Ou B X, Prior R L. J. Agric. Food Chem., 2005, 53: 1841-1856
[5] Magalaes L M, Segundo M A, Reis S, Lima J L F C. Anal. Chim. Acta, 2008, 613: 1-19
[6] Laguerre M, Lecomte J, Villeneuve P. Prog. Lipid Res., 2007, 46: 244-282
[7] Roginsky V, Lissi E A. Food Chem., 2005, 92: 235-254
[8] Halliwell B. Trends Biochem. Sci., 2006, 31: 509-515
[9] Aruoma O I, Murcia A, Butler J, Halliwell B. J. Agric. Food Chem., 1993, 41: 1880-1885
[10] Quick K L, Hardt J I, Dugan L L. J. Neurosci. Methods, 2000, 97: 139-144
[11] Kruedener S V, Schempp H, Elstner E F. Free Radical Biol. Med., 1995, 19: 141-146
[12] Calliste C A, Trouillas P, Allais D P, Simon A, Duroux J L. J. Agric. Food Chem., 2001, 49: 3321-3327
[13] Oosthuizen M M J, Greyling D. Redox Rep., 1999, 4: 277-290
[14] Lu C, Song G H, Lin J M. TrAC Trends Anal. Chem., 2006, 25: 985-995
[15] Ruch R J, Cheng S J, Klaunig J E. Carcinogenesis, 1989, 10: 1003-1008
[16] Sellers R M. Analyst, 1980, 105: 950-954
[17] Pazdzioch-Czochra M, Widenska A. Anal. Chim. Acta, 2002, 452: 177-184
[18] Arnous A, Petrakis C, Makris D P, Kefalas P. J. Pharmacol. Toxicol. Methods, 2002, 48: 171-177
[19] Halliwell B, Gutteridge J M C, Aruoma O I. Anal. Biochem., 1987, 165: 215-219
[20] Zhu B Z, Kitrossky N, Chevion M. Biochem. Biophys. Res. Commun., 2000, 270: 942-946
[21] Haenen G R M M, Bast A. Biochem. Pharmacol., 1991, 42: 2244-2246
[22] Ching T L, Dejong J, Bast A. Anal. Biochem., 1994, 218: 377-381
[23] Yan L J, Traber M G, Kobuchi H, Matsugo S, Tritschler H J, Packer L. Arch. Biochem. Biophys., 1996, 327: 330-334
[24] Gatto M T, Firuzi O, Agostino R, Grippa E, Borso A, Spinelli F, Pavan L, Petrolati M, Petrucci R, Marrosu G, Saso L. Biomed. Chromatogr., 2002, 16: 404-411
[25] Wilkinson F, Helman W P, Ross A B. J. Phys. Chem. Ref. Data, 1995, 24: 663-1021
[26] Fu Y L, Krasnovsky A A, Foote C S. J. Phys. Chem. A, 1997, 101: 2552-2554
[27] Costa D, Fernandes E, Santos J L M, Pinto D C G A, Silva A M S, Lima J L F C. Anal. Bioanal. Chem., 2007, 387: 2071-2081
[28] Koshland D E. Science, 1992, 258: 1861
[29] Vriesman M F, Haenen G R M M, Westerveld G J, Paquay J B G, Voss H P, Bast A. Pharm. World Sci., 1997, 19: 283-286
[30] Krol W, Czuba Z P, Threadgill M D, Cunningham B D M, Pietsz G. Biochem. Pharmacol., 1995, 50: 1031-1035
[31] Nagata N, Momose K, Ishida Y. J. Biochem., 1999, 125: 658-661
[32] Whiteman M, Halliwell B, Darley-usmar V. Free Radic. Res., 1996, 25: 275-283
[33] Kooy N W, Royall J A, Ischiropoulos H, Beckman J S. Free Radical Biol. Med., 1994, 16: 149-156
[34] Miller N J, Rice-Evans C, Davies M J, Gopinathan V, Milner A. Clin. Sci., 1993, 84: 407-412
[35] Schlesier K, Harwat M, Bohm V, Bitsch R. Free Radical Res., 2002, 36: 177-187
[36] Van den Berg R, Haenen G R M M, Van den Berg H, Bast A. Food Chem., 1999, 66: 511-517
[37] Brand-Williams W, Cuvelier M E, Berset C. LWT-Food Sci. Technol., 1995, 28: 25-30
[38] De Beer D, Joubert E, Gelderblom W C A, Manley M. J. Agric. Food Chem., 2003, 51: 902-909
[39] Fukumoto L R, Mazza G. J. Agric. Food Chem., 2000, 48: 3597-3604
[40] Benzie I F F. Clin. Biochem., 1996, 29: 111-116
[41] Pellegrini N, Serafini M, Colombi B, Del Rio D, Salvatore S, Bianchi M, Brighenti F. J. Nutr., 2003, 133: 2812-2819
[42] Proteggente A R, Pannala A S, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C, Rice-Evans C A. Free Radical Res., 2002, 36: 217-233
[43] Prior R L, Cao G. Free Radical Biol. Med., 1999, 27: 1173-1181
[44] MacDonald-Wicks L K, Wood L G, Garg M L. J. Sci. Food Agric., 2006, 86: 2046-2056
[45] Chevion S, Berry E M, Kitrossky N, Kohen R. Free Radical Biol. Med., 1997, 22: 411-421
[46] Kohen R, Beit-Yannai E, Berry E M, Tirosh O. Methods Enzymol., 1999, 300: 285-296
[47] Chevion S, Chevion M, Chock P B, Beecher G R. J. Med. Food., 1999, 2: 1-10
[48] Li H, Ma X Y, Dong J, Qian W P. Anal. Chem., 2009, 81: 8916-8922
[49] Ma X Y, Qian W P. Biosens. Bioelectron., 2010, 26: 1049-1055.
[50] Scampicchio M, Wang J, Blasco A J, Arribas A S, Mannino S, Escarpa A. Anal. Chem., 2006, 78: 2060-2063
[51] Wang J, Zhou N D, Zhu Z Q, Huang J Y, Li G X. Anal. Bioanal. Chem., 2007, 388: 1199-1205
[52] Jiang H, Ju H X. Anal. Chem., 2007, 79: 6690-6696
[53] Kim S H, Kim B, Yadavalli V K, Pishko M V. Anal. Chem., 2005, 77: 6828-6833
[54] Martin R, Menchon C, Apostolova N, Victor V M, lvaro M A, Herance, J R, Garcia H. ACS Nano, 2010, 4: 6957-6965
[55] Kim J, Shirasawa T, Miyamoto Y. Biomaterials, 2010, 31: 5849-5854
[56] Andrievsky G V, Bruskov V I, Tykhomyrov A A, Gudkov S V. Free Radical Biol. Med., 2009, 47: 786-793
[57] Rogers E J, Hsieh S F, Organti N, Schmidt D, Bello D. Toxicology in Vitro, 2008, 22: 1639-1647
[58] Zhao J F, Li N, Wang S S, Zhao X Y, Wang J, Yan J Y, Ruan J, Wang H, Hong F S. Journal of Experimental Nanoscience, 2010, 5: 447-462

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[7] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[8] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[9] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[10] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[11] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[12] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[13] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[14] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[15] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
阅读次数
全文


摘要

抗氧化能力评价方法