English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1710-1718 前一篇   后一篇

• 综述与评论 •

电子捕获解离技术在生物质谱中的作用

石磊1, 刘淑莹2*, Zubarev Roman3   

  1. 1. 吉林大学公共卫生学院 长春 130021;
    2. 中科院长春应用化学研究所 长春 130022;
    3. Division of Molecular Biometry, Department of Medical Biochemistry & Biophysics, Karolinska Institute, Sweden
  • 收稿日期:2010-11-01 修回日期:2011-03-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 刘淑莹 E-mail:syliu@ciac.jl.cn

ECD Technology in Biological Mass Spectrometry

Shi Lei1, Liu Shuying2*, Zubarev Roman3   

  1. 1. College of Public Health, Jilin University, Changchun 130021, China;
    2. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022,China;
    3. Division of Molecular Biometry, Department of Medical Biochemistry & Biophysics, Karolinska Institute, Sweden
  • Received:2010-11-01 Revised:2011-03-01 Online:2011-08-24 Published:2011-07-25

电子捕获解离(ECD)是一种非各态历经的(non-ergodic)解离方式,可导致多肽中N-Cα键断裂,也能更优先断裂S-S键,在较高电子能量条件下还可以区分亮氨酸和异亮氨酸,并且在断裂过程中能完整保留蛋白质分子的修饰位点。因此,它与碰撞活化解离(CAD)等传统解离方式形成了较为理想的互补。ECD与CAD的联合使用可提供更广泛的多肽覆盖率序列信息,提高蛋白测序的效率与准确度。本文在介绍ECD基本原理、解离机理的基础上,简要地总结了ECD技术在生物质谱中的作用。

Electron capture dissociation (ECD) which is believed to be non-ergodic process is a new fragmentation technique used in Fourier transformation cyclotron resonance mass spectrometry and is complementary to conventional tandem mass spectrometry techniques.Its cleavage preferentially happens not only on N-Cα bond but also on disulfide bonds (S-S) in polypeptides, which are normally stable to vibrational excitation. The labile post-translational modifications and non-covalent bonds often remain intact after backbone bond dissociation. ECD provides more extensive sequence coverage in polypeptides, and at higher electron energies even isoleucine and leucine are distinguishable. The combination of CAD and ECD improves protein identification and enables high-throughput de novo sequencing of proteins. An overview of the principle and mechanism of ECD as well as its application in biological mass spectrometry is given.

Contents
1 Introduction
2 Basic principle of ECD
2.1 Basic structure of ECD FT-ICR-MS
2.2 Basic principle of ECD
3 Dissociation mechanism of ECD
3.1 Types of fragmentation ions
3.2 Dissociation mechanism of ECD
3.3 Energy variety of ECD
4 Application of ECD in bio-macromolecule study
4.1 Determination and de novo sequencing of protein
4.2 Xle isomer differentiation
4.3 Disulfide bond confirmation
4.4 Modification determination
4.5 Application in protein separation
5 Outlook

中图分类号: 

()

[1] McLafferty F W, Fridriksson E K, Horn D M, Lewis M A, Zubarev R A. Science, 1999, 284: 5418-5419
[2] Horn D M, Ge Y, McLafferty F W. Anal. Chem., 2000, 72: 4778-4784
[3] Zubarev R A, Kelleher N L, McLafferty F W. J. Am. Chem. Soc., 1998, 120: 3265-3266
[4] Loo J A, Edmonds C G, Udseth H R, Smith R D. Anal. Chem., 1990, 62: 693-698
[5] Zubarev R A, Kruger N A, Fridriksson E K, Lewis M A, Horn D M, Carpenter B K, McLafferty F W. J. Am. Chem. Soc., 1999, 121: 2857-2862
[6] Zubarev R A, Horn D M, Fridriksson E K, Kelleher N L, Kruger N A, Lewis M A, Carpenter B K, McLafferty F W. Anal. Chem., 2000, 72: 563-573
[7] Turecek F, MaLafferty F W. J. Am. Chem. Soc., 1984, 106: 2525-2528
[8] Zubarev R A. Current Opinion in Biotechnology, 2004, 15: 12-16
[9] Zubarev R A. Expert Rev. Proteomics, 2006, 3: 251-261
[10] Helen J, Cooper H J, Kristina H. Mass Spectrom. Rev., 2005, 24: 201-222
[11] 贾伟(Jia W), 应万涛(Ying W T), 钱小红(Qian X H). 质谱学报(J. Chinese Mass Spectrometry Society), 2007, 28: 55-64
[12] Suckau D, Shi Y, Beu S C, Senko M W, Quinn J P, Wampler F M, McLafferty F W. Proc. Natl. Acad. Sci. USA, 1993, 90: 790-793
[13] Zubarev R A, Haselmann K F, Budnik B, Kjeldsen F, Jensen F. European Journal of Mass Spectrometry, 2002, 8: 337-349
[14] Cooper H J, Hudgins R R, Marshall A G. Int. J. Mass Spectrom., 2004, 234: 24-35
[15] Kjeldsen F, Zubarev R A. J. Am. Chem. Soc., 2003, 125: 6628-6629
[16] Kruger N A, Zubarev R A, Horn D M, McLafferty F W. International Journal of Mass Spectrometry, 1999, 185/187: 787-793
[17] Turecek F, Syrstad E A, Seymour J L, Chen X H, Yao C X. Journal of Mass Spectrometry, 2003, 38: 1093-1104
[18] Syrstad E A, Stephens D D, Turecek F. Journal of Physical Chemistry A, 2003, 107: 115-126
[19] Turecek F, Syrstad E A. J. Am. Chem. Soc., 2003, 125: 3353-3369
[20] Leymarie N, Costello C E, O'Connor P B. J. Am. Chem. Soc., 2003, 125: 8949-8958
[21] Zubarev R A. Mass Spectrometry Reviews, 2003, 22: 57-77
[22] Uggerud E. International Journal of Mass Spectrometry, 2004, 234: 45-50
[23] Kjeldsen F. Doctoral Thesis of University of Southern Denmark, 2004, 29-30
[24] Kruger N A, Zubarev R A, Carpenter B K, Kelleher N L, Horn D M, McLafferty F W. International Journal of Mass Spectrometry, 1999, 182/183: 1-5
[25] Haselmann K F, Budnik B A, Kjeldsen F, Polfer N C, Zubarev R A. European Journal of Mass Spectrometry, 2002, 8: 461-469
[26] Horn D M, Zubarev R A, McLafferty F W. Proc. Natl. Acad. Sci. USA, 2000, 97: 10313-10316
[27] Savitski M M, Nielsen M L, Kjeldsen F, Zubarev R A. J. Proteome Res., 2005, 4: 2348-2354
[28] Ge Y, Lawhorn B G, ElNaggar M, Strauss E, Park J H, Begley T P, McLafferty F W. J. Am. Chem. Soc., 2002, 124: 672-678
[29] Kjeldsen F, Budnik B A, Haselmann K F, Jensen F, Zubarev R A. Chem. Phys. Lett., 2002, 356: 201-206
[30] Cooper H J, Hakansson K, Marshall A G. Mass Spectrom. Rev., 2005, 24: 201-222
[31] Mirgorodskaya E, Roepstorff P, Zubarev R A. Anal. Chem., 1999, 71: 4431-4436
[32] Kjeldsen F, Haselmann K F, Budnik B A, Srensen E S, Zubarev R A. Anal. Chem., 2003, 75: 2355-2361
[33] Kjeldsen F, Savitski M M, Nielsen M L, Shi L, Zubarev R A. The Analyst, 2007, 132: 768-776
[34] Shi L, Yang T Z, Zubarev R A. Chem. Res. Chinese Universities, 2010, 26(1): 17-22
[35] Artemenko K A, Zubarev A R, Samgina T Y, Lebedev A T, Savitski M M, Zubarev R A. Anal. Chem., 2009, 81: 3738-3745
[36] Zubarev R A, Yang H. Angew. Chem. Int. Ed., 2010, 49: 1439-1441
[37] Misharinl A S, Zubarev R A, Doroshenko V M. Rapid Commun. Mass Spectrom., 2010, 24: 1931-1940
[38] Syka J E P, Coon J J, Schroeder M J, Shabanowitz J, Hunt D F. Proc. Natl. Acad. Sci. USA, 2004, 101: 9528-9533
[39] 陈英(Chen Y), 张锴(Zhang K), 何锡文(He X W), 张玉奎(Zhang Y K). 化学进展(Progress in Chemistry), 2010, (4): 713-719
[40] 孙瑞祥(Sun R X), 董梦秋(Dong M Q), 迟浩(Chi H), 杨兵(Yang B), 秀丽蕴(Xiu L Y), 王乐珩(Wang L H), 付岩(Fu Y), 贺思敏(He S M). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2010, 37(1): 94-102
[41] Alley W R, Mechref Y, Novotny M V. Rapid Commun. Mass Spectrom., 2009, 23(1): 161-170
[42] Srikanth R, Wilson J, Vacheta R W. J. Mass Spectrom., 2009, 44(5): 755-762
[43] Kady L K, Patrick A L. J. Am. Soc. Mass Spectrom., 2010, 21, 1387-1397
[44] Turecek F, Chung T W, Moss C L, Wyer J A, Ehlerding A, Holm A I S, Zettergren H, Nielsen S B, Hvelplund P, Rooke J C, Bythell B, Paizs B L. J. Am. Chem. Soc., 2010, 132: 10728-10740

[1] 张佳玲, 霍飞凤, 周志贵, 白玉, 刘虎威. 实时直接分析质谱的原理及应用[J]. 化学进展, 2012, 24(01): 101-109.
[2] 薛震,邱波,林广欣,赖丛芳,罗海. 解吸电喷雾电离技术*[J]. 化学进展, 2008, 20(04): 594-601.
[3] 金顺平,李建权,韩海燕,王鸿梅,储焰南,周士康. 质子转移反应质谱在线检测痕量挥发性有机物*[J]. 化学进展, 2007, 19(06): 996-1006.
[4] 侯可勇,董璨,王俊德,李海洋. 飞行时间质谱仪新技术的进展及应用*[J]. 化学进展, 2007, 19(0203): 385-392.
[5] 李明,陈焕文,刘志强,刘淑莹,金钦汉. 质谱动力学方法在手性分析中的应用[J]. 化学进展, 2006, 18(10): 1369-1374.
[6] 刘勤,张淑珍,吴弼东,申睿,谢剑炜,刘克良. 电喷雾质谱在手性识别和分析中的应用*[J]. 化学进展, 2006, 18(06): 780-788.
[7] 王伟 蔡文生 邵学广. 傅立叶变换离子回旋共振质谱及其研究进展[J]. 化学进展, 2005, 17(02): 336-342.