English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1700-1709 前一篇   后一篇

• 综述与评论 •

聚合物电存储材料及其双电极型存储器件

仝淑敏1, 宋娟1*, 凌启淡1,2*   

  1. 1. 南京邮电大学信息材料与纳米技术研究院 南京 210046;
    2. 福建师范大学化学与材料学院 福州 350108
  • 收稿日期:2010-10-01 修回日期:2011-01-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 宋娟, 凌启淡 E-mail:iamjsong@njupt.edu.cn; lingqd@hotmail.com
  • 基金资助:

    国家自然科学基金项目(No.60976019)、 教育部"新世纪优秀人才"支持计划项目(No.NCET-07-0446)、 高校博士学科点专项科研基金项目(No.20093223110002)、 江苏省"高校优秀科技创新团队"资助项目(No.TJ207035)、 南京市留学回国人员科技活动择优资助项目(No.TJ208027)和南京邮电大学引进人才科研启动基金项目(No.NY207164)资助

Polymer Electrical Memory Materials and Diode Memory Devices

Tong Shumin1, Song Juan1*, Ling Qidan1,2*   

  1. 1. Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210046, China;
    2. College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350108, China
  • Received:2010-10-01 Revised:2011-01-01 Online:2011-08-24 Published:2011-07-25

随着信息产业的高速发展,传统的存储技术已不能完全满足人们的需求。因此,对聚合物电存储材料与器件的研究应运而生。相对于传统的无机存储材料,基于聚合物的电存储材料与器件具有易加工、低成本、稳定性好、低功耗、可实现三维堆积以及高存储密度等优点,极有可能取代传统的无机半导体器件,显示出广阔的发展前景。本文介绍了聚合物电存储器件的一些基本原理及基本概念,并对存储器件几种主要的作用机制做了归纳; 根据器件的易失性与否,描述了闪存、一次写入多次读取及动态随机存储器件三类存储器件的存储特点,总结了聚合物电双稳材料及其在三类存储器件中应用的研究进展,探讨了这一研究领域需要解决的一些关键问题,最后展望了聚合物电存储材料与器件的研究和发展方向。

With the rapid development of information technology, conventional memories are facing with unprecedented challenge for both code and mass storage applications spurred by potable system. New memory technologies are demanded urgently to miniaturize from micro-to nano-scale. Polymer electrical memory materials and devices have emerged in recent years to meet the requirements. Compared with inorganic materials, polymer electrical memory materials exhibit several significant advantages, such as easy processability, low cost, good stability, high mechanical strength, low-power dissipation, multi-layer stacking,super high data storage density and so on. These advantages make possible for polymer memory to be an alternative or supplementary technology to the conventional memory technology. Firstly, the design principles and basic concepts of organic memory materials and devices are briefly introduced in this paper. Several critical features and main mechanisms of memory devices are summarized. Secondly, according to the volatile property,polymer memory devices are classified into three categories, including flash memory devices, write-once read-many times memory devices and dynamic random access memory devices. The recent research progress in polymer memory materials and their applications in these three categories of polymer electronic memories are reviewed respectively. Finally, the existing challenges in polymer electronic memories are discussed and the research and development trend in this field are prospected.

Contents
1 Introduction
2 Organic electrical memory devices
2.1 The critical features of memory devices
2.2 The main mechanisms of memory devices
3 Polymer electrical memory materials and devices
3.1 Flash memory devices
3.2 Write-once read-many times memory devices
3.3 Dynamic random access memory devices
4 Conclusions and outlook

中图分类号: 

()

[1] Yang Y, Ouyang J Y, Ma L P, Tseng R J H, Chu C W. Adv. Funct. Mater., 2006, 16: 1001-1014
[2] Ling Q D, Song Y, Lim S L, Teo E Y H, Tan Y P, Zhu C X, Chan D S H, Kwong D L, Kang E T, Neoh K G. Angew. Chem. Int. Ed., 2006, 18: 2947-2951
[3] Möller S, Perlov C, Jackson W, Taussig C, Forrest S R. Nature, 2003, 426: 166-169
[4] Ling Q D, Song Y, Ding S J, Zhu C X, Chan D S H, Kwong D L, Kang E T, Neoh K G. Adv. Mater., 2005, 17: 455-459
[5] Ovshinsky S R. Phys. Rev. Lett., 1968, 21: 1450-1453
[6] Lew D W. US 3359521, 1967
[7] Lem D J, Spruth W G. US 3432815, 1969
[8] Ovshinsky S R. US 3271591, 1966
[9] Sliva P O, Dir G, Griffiths C. J. Non-Cryst. Solids, 1970, 2: 316-333
[10] Carchano H, Lacoste R, Segui Y. Appl. Phys. Lett., 1971, 19: 414-415
[11] Dearnaley G, Morgan D V, Stoneham A M. J. Non-Cryst. Solids, 1970, 4: 593-612
[12] Dearnaley G, Stoneham A M, Morgan D V. Rep. Prog. Phys., 1970, 33: 1129-1191
[13] Kao K C, Hwang W. Electrical Transport in Solids: With Particular Reference to Organic Semiconductors.1st ed. NY: Pergamon Press, 1981
[14] Henisch H K, Smith W R. Appl. Phys. Lett., 1974, 24: 589-591
[15] Hovel H J, Urgell J J. Appl. Phys., 1971, 42: 5076-5083
[16] Rose A. Phys. Rev., 1955, 97: 1538-1544
[17] 郭鹏(Guo P). 复旦大学博士论文(Doctoral Dissertation of Fudan University), 2007
[18] Collier C P, Mattersteig G, Wong E W, Luo Y, Beverly K, Sampaio J, Raymo F M, Stoddart J F, Heath J R. Science, 2000, 289: 1172-1175
[19] Ling Q D, Song Y, Zhu C X, Chan D S H, Kwong D L, Kang E T, Neoh K G. Adv. Mater., 2005, 17: 455-459
[20] Choi T L, Lee K H, Joo W J, Lee S, Lee T W, Chae M Y. J. Am. Chem. Soc., 2007, 129: 9842-9843
[21] Hua Z Y, Chen G R. Vacuum, 1992, 43: 1019-1023
[22] Ling Q D, Wang W, Song Y, Zhu C X, Chan D S H, Kang E T, Neoh K G. J. Phys. Chem. B, 2006, 110: 23995-24001
[23] Lai Y S, Tu C H, Kwong D L, Chen J S. Appl. Phys. Lett., 2005, 87: art. no. 122101
[24] Ling Q D, Lim S L, Song Y, Zhu C X, Chan D S H, Kang E T, Neoh K G. Langmuir, 2007, 23: 312-319
[25] Xie L H, Ling Q D, Hou X Y, Huang W. J. Am. Chem. Soc., 2008, 130: 2120-2121
[26] Hahm S G, Lee T J, Ree M. Adv. Funct. Mater., 2007, 17: 1359-1370
[27] Shin T J, Ree M. J. Phys. Chem. B, 2007, 111: 13894-13900
[28] Hahm S G, Lee S W, Suh J, Chae B, Kim S B, Lee S J, Lee K H, Jung J C, Ree M. High Perform. Polym., 2006, 18: 549-577
[29] Ree M. Macromol. Res., 2006, 14: 1-33
[30] Hahm S G, Choi S. J. Mater. Chem., 2009, 19: 2207-2214
[31] Hahm S G, Choi S, Hong S H, Lee T J, Park S, Kim D M, Kwon W S, Kim K, Kim O, Ree M. Adv. Funct. Mater., 2008, 18: 3276-3282
[32] Kim K, Park S. J. Phys. Chem. B, 2009, 113: 9143-9150
[33] You N H, Chueh C C, Liu C L, Ueda M, Chen W C. Macromolecules, 2009, 42: 4456-4463
[34] Liu C L, Hsu J C, Chen W C, Sugiyama K, Hirao A. ACS Appl. Mater. Interfaces, 2009, 1: 1974-1979
[35] Li H, Li N J, Gu H W, Xu Q F, Yan F, Lu J M, Xia X W, Ge J F, Wang L H. J. Phys. Chem. C, 2010, 114: 6117-6122
[36] Lim S L, Li N J, Lu J M, Ling Q D, Zhu C X, Kang E T, Neoh K G. ACS Appl. Mater. Interfaces, 2009, 1: 60-71
[37] Lim S L, Ling Q D, Teo E Y H, Zhu C X, Chan D S H, Kang E T, Neoh K G. Chem. Mater., 2007, 19: 5148-5157
[38] Teo E Y H, Ling Q D, Song Y, Tan Y P, Wang W, Kang E T, Chan D S H, Zhu C X. Org. Electron., 2006, 7: 173-180
[39] Zhuang X D, Chen Y, Liu G, Zhang B, Neoh K G, Kang E T, Zhu C X, Li Y X, Niu L J. Adv. Funct. Mater., 2010, 20: 2916-2922
[40] Ling Q D, Song Y, Teo E Y H, Lim S L, Zhu C X, Chan D S H, Kwong D L, Kang E T, Neoh K G. Electrochem. Solid-State Lett., 2006, 9: G268-G271
[41] Song Y, Ling Q D, Zhu C X, Kang E T, Chan D S H, Wang Y H, Kwong D L. IEEE Electron Device Letters, 2006, 27: 154-156
[42] Song Y, Tan Y P, Teo E Y H, Zhu C X, Chan D S H, Ling Q D, Neoh K G, Kang E T. J. Appl. Phys., 2006, 100: art. no. 084508
[43] Li L, Ling Q D, Lim S L, Tan Y P, Zhu C X, Chan D S H, Kang E T, Neoh K G. Org. Electron., 2007, 8: 401-406
[44] Choi S, Hong S H, Cho S H, Park S, Park S M, Kim O, Ree M. Adv. Mater., 2008, 20: 1766-1771
[45] Zhuang X D, Chen Y, Li B X, Ma D G, Zhang B, Li Y X. Chem. Mater., 2010, 22: 4455-4461
[46] Wang K L, Liu Y L, Lee J W, Neoh K G, Kang E T. Macromolecules, 2010, 43: 7159-7164
[47] Lee T J, Chang C W, Hahm S G, Kim K, Park S, Kim D M, Kim J, Kwon W S, Liou G S, Ree M. Nanotechnology, 2009, 20: art. no. 135204
[48] Kim K, Park S, Hahm S G, Lee T J, Kim D M, Kim J C, Kwon W, Ko Y G, Ree M. J. Phys. Chem. B, 2009, 113: 9143-9150
[49] Kim D M, Park S, Lee T J, Hahm S G, Kim K, Kim J C, Kwon W, Ree M. Lamgmuir, 2009, 25: 11713-11719
[50] Ling Q D, Song Y, Lim S L, Teo E Y H, Tan Y P, Zhu C X, Chan D S H, Kwong D L, Kang E T, Neoh K G. Angew. Chem. Int. Ed., 2006, 45: 2947 -2951
[51] Park S, Lee T J, Kim D M, Kim J C, Kim K, Kwon W, Ko Y G, Choi H, Chang T, Ree M. J. Phys. Chem. B, 2010, 114: 10294-10301
[52] Ling Q D, Chang F C, Song Y, Zhu C X, Liaw D J, Chan D S H, Kang E T, Neoh K G. J. Am. Chem. Soc., 2006, 128: 8732-8733
[53] Kuorosawa T, Chueh C C, Liu C L, Higashihara T, Ueda M, Chen W C. Macromolecules, 2010, 43: 1236-1244

[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[8] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[9] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[10] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[11] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[12] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[13] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[14] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[15] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.