English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1627-1643 前一篇   后一篇

• 综述与评论 •

小分子铱配合物及其电致发光

廖章金1,2, 朱彤珺1,2, 密保秀1,2, 高志强1*, 范曲立2, 黄维2*   

  1. 1. 江苏省平板显示与固体照明研究中心 南京邮电大学材料科学与工程学院 南京210046;
    2. 有机电子与信息显示国家重点实验室培育基地 南京邮电大学先进材料研究院(IAM) 南京 210046
  • 收稿日期:2010-10-01 修回日期:2011-02-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 高志强, 黄维 E-mail:iamzqgao@njupt.edu.cn, iamwhuang@njupt.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20974046, 61077021, 61076016)、国家重点基础研究计划(973)项目(No. 2009CB930600)、教育部新世纪杰出人才基金项目(No.NCET-08-0697)和江苏省高等教育自然科学基金项目(No.08KJB430011)资助

Molecular Iridium(Ⅲ) Complexes and Their Corresponding Electrophosphorescent Devices

Liao Zhangjin1,2, Zhu Tongjun1,2, Mi Baoxiu1,2, Gao Zhiqiang1*, Fan Quli2, Huang Wei2*   

  1. 1. Jiangsu Engineering Center for Flat-Panel Displays & Solid-State Lighting, School of Materials Science & Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210046, China;
    2. Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210046, China
  • Received:2010-10-01 Revised:2011-02-01 Online:2011-08-24 Published:2011-07-25

由于磷光金属配合物可以同时利用单线态和三线态激子发光,使有机电致发光器件的理论内量子效率达到100%,突破了25%的极限。因而以磷光金属配合物为发光材料制成的器件备受关注。在这些金属配合物中,铱配合物由于具有较强的发光特性、发光波长可调性、较好的热稳定性和电化学稳定性以及能够形成便于蒸镀的中性分子,而成为最有应用潜力的电致磷光材料。本文综述了近几年铱配合物磷光材料在分子设计与合成方法、发光机理及器件构筑等方面的研究进展。特别介绍与讨论了磷光铱配合物的两种发光机理,即基于同配体铱配合物或异配体铱配合物的主配体到中心金属离子的电荷转移三线态(3MLCT)发射和基于异配体铱配合物的辅助配体三线态(3LC)发射。根据反应条件的差异,归纳总结了合成铱配合物常用的4种方法以及合成fac式和mer式的铱配合物的方法。还根据材料的发光颜色及其电致发光的不同,对磷光铱配合物材料进行了分类与讨论。此外,简要介绍了用于器件制作的主体材料。最后,展望了金属有机配合物电致磷光材料的发展前景,并提出了今后磷光材料的发展方向。

Phosphorescent transition-metal complexes have attracted extensive attention in recent years due to their ability of harvesting both singlet and triplet exciton in organic light-emitting diodes (OLEDs), theoretically enabling internal quantum efficiency to be 100%, while the up-limitation for fluorescent OLEDs is 25%. Among these materials, iridium complexes are the most promising emitters for OLEDs since they usually have good features of strong luminescence, tunable emission color, good thermal and electrochemical stability, as well as being able to form neutral compounds for vacuum deposition. This article reviews the progress in molecular iridium complexes, focusing on the aspects of material design and synthesis, mechanisms for emission, as well as innovation of materials and their performance in OLED devices. Particularly, after describing the typical device structure for phosphorescent emitter, the dominate emission mechanisms for iridium complexes are discussed in two classes, i.e., main ligand-based metal-ligand charge transfer (MLCT) emission for both homoleptic and heteroleptic complexes, auxiliary ligand intermediated MLCT emission for heteroleptic complexes. For material synthesis, according to the nature of reaction, four commonly used synthetic-routes are summarized. Meanwhile, the facial-and meridional-isomers are discussed. In the material development for OLEDs, categorized into different emission color, materials and their corresponding device performance are summarized and discussed. In addition, the host materials for the above emitters are briefly introduced. Finally, further development for phosphorescent materials is proposed.

Contents
1 Introduction
2 Basic structures and operating principle of OLEDs
3 Light emitting mechanisms for iridium (Ⅲ) complexes
4 Synthesis of iridium (Ⅲ) complexes
5 Progress in developing iridium (Ⅲ) complexes
5.1 Green phosphorescent iridium (Ⅲ) complexes
5.2 Red phosphorescent iridium (Ⅲ) complexes
5.3 Blue phosphorescent iridium (Ⅲ) complexes
5.4 Other emitting color iridium (Ⅲ) complexes
6 Host materials for iridium (Ⅲ) complexes
7 Conclusions and prospects

中图分类号: 

()

[1] Kawamura Y, Goushi K, Brooks J, Brown J J, Sasabe H, Adachi C. Appl. Phys. Lett., 2005, 86: art. no. 071104
[2] Nuyken O, Jungermann S, Wiederhirn V, Bacher E, Meerholz K. Monatsh. Chem., 2006, 137: 811-824
[3] Yersin H. Top. Curr. Chem., 2004, 241: 1-26
[4] Waser R. Nanoelectronics and Information Technology-Advanced: Electronic Materials and Novel Devices, Weinheim: Wiley-VCH, 2003, p: 917
[5] Kido J, Matsumoto T. Appl. Phys. Lett., 1998, 73: 2866-2868
[6] Walzer K, Maennig B, Pfeiffer M, Leo K. Chem. Rev., 2007, 107: 1233-1271
[7] Blom P W M, Tanase C, de Leeuw D M, Coehoorn R. Appl. Phys. Lett., 2005, 86: art. no. 092105
[8] Wohlgenannt M, Tandon K, Mazumdar S, Ramasesha S, Vardeny Z V. Nature, 2001, 409: 494-497
[9] Köhler A, Wilson J S, Friend R H. Adv. Mater., 2002, 14: 701-707
[10] Shuai Z, Beljonne D, Silbey R J, Brédas J L. Phys. Rev. Lett., 2000, 84: 131-134
[11] Grushin V V, Herron N, LeCloux D D, Marshall W J, Petrove V A, Wang Y. Chem. Commun., 2001, 1494-1495
[12] Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. J. Am. Chem. Soc., 2003, 125: 12971-12979
[13] Tamayo A B, Alleyne B D, Djurovich P I, Lamansky S, Tsyba I, Ho N N, Bau R, Thompson M E. J. Am. Chem. Soc., 2003, 125: 7377-7387
[14] Sajoto T, Djurovich P I, Tamayo A, Yousufuddin M, Bau R, Thompson M E. Inorg. Chem., 2005, 44: 7992-8003
[15] Lamansky S, Djurovich P, Murphy D, Razzaq F A, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson M E. Inorg. Chem., 2001, 40: 1704-1711
[16] Lamansky S, Djurovich P, Murphy D, Razzaq F A, Lee H E, Adachi C, Burrows P E, Forrest S R, Thompson M E. J. Am. Chem. Soc., 2001, 123: 4304-4312
[17] Kapturkiewicza A, Nowacki J, Borowicz P. Electrochimica Acta, 2005, 50: 3395-3400
[18] Tao Y T, Wang Q, Yang C L, Zhang K, Wang Q, Zou T T, Qin J G, Ma D G. J. Mater. Chem., 2008, 18: 4091-4096
[19] You Y, Park S Y. J. Am. Chem. Soc., 2005, 127: 12438-12439
[20] Kwon T H, Cho H S, Kim M K, Kim J W, Kim J J, Lee K H, Park S J, Shin I K, Kim H, Shin D M, Chung Y K, Hong J I. Organometallics, 2005, 24: 1578-1585
[21] You Y, Seo J, Kim S H, Kim K S, Ahn T K, Kim D, Park S Y. Inorg. Chem., 2008, 47: 1476-1487
[22] You Y, Kim K S, Ahn A T, Kim D, Park S Y. J. Phys. Chem. C, 2007, 111: 4052-4060
[23] Gu X, Fei T, Zhang H Y, Xu H, Yang B, Ma Y G, Liu X D. Eur. J. Inorg. Chem., 2009, 2407-2414
[24] Chang C J, Yang C H, Chen K, Chi Y, Shu C F, Ho M L, Yeh Y S, Chou P T. Dalton Trans., 2007, 1881-1890
[25] Fei T, Gu X, Zhang M, Wang C L, Hanif M, Zhang H Y, Ma Y G. Synthetic Metals, 2009, 159: 113-118
[26] McDonald A R, Lutz M, Chrzanowski L S V, Klink G P M, Spek A L, Koten G V. Inorg. Chem., 2008, 47: 6681-6691
[27] Takizawa S Y, Sasaki Y, Akhtaruzzaman M, Echizen H, Nishida J I, Iwata T, Tokito S, Yamashita Y. J. Mater. Chem., 2007, 17: 841-849
[28] Yang C H, Cheng Y M, Chi Y, Hsu C J, Fang F C, Wong K T, Chou P T, Chang C H, Tsai M H, Wu C C. Angew. Chem. Int. Ed., 2007, 46: 2418 -2421
[29] Sprouse S, King K A, Spellane P J, Watts R J. J. Am. Chem. Soc., 1984, 106: 6647-6653
[30] Coppo P, Plummer E A, Cola L D. Chem. Commun., 2004, 1774-1775
[31] Plummer E A, Hofstraat J W, Cola L D. Dalton Trans., 2003, 2080-2084
[32] Park G Y, Seo J H. Journal of the Korean Physical Society, 2007, 50: 1729-1734
[33] Dedeian K, Djurovich P I, Garces F O, Carlson G, Watts R J. Inorg. Chem., 1991, 30: 1685-1687
[34] King K A, Spellane P J, Watts R J. J. Am. Chem. Soc., 1985, 107: 1431-1432
[35] Tong B H, Mei Q B, Wang S J, Fang Y, Meng Y Z, Wang B. J. Mater. Chem., 2008, 18: 1636-1639
[36] Fang Y, Hu S J, Meng Y Z, Peng J B, Wang B. Inorganica Chimica Acta, 2009, 362: 4985-4990
[37] Fang Y, Tong B H, Hu S J, Wang S J, Meng Y Z, Peng J B, Wang B. Organic Electronics, 2009, 10: 618-622
[38] McGee K A, Mann K R. Inorg. Chem., 2007, 46: 7800-7809
[39] Huo S Q, Deaton J C, Rajeswaran M, Lenhart W C. Inorg. Chem., 2006, 45: 3155-3157
[40] Schneidenbach D, Ammermann S, Debeaux M, Freund A, Zöllner M, Daniliuc C, Jones P G, Kowalsky W, Johannes H H. Inorg. Chem., 2010, 49: 397-406
[41] Konno H, Sasaki Y. Chemistry Letters, 2003, 32: 252-253
[42] Baldo M A, Adachi C, Forrest S R. Phys. Rev. B, 2000, 62: 10967-10977
[43] Watanabe S, Ide N, Kido J. Jpn. J. Appl. Phys., 2007, 46: 1186-1188
[44] Hsu N M, Li W R. Angew. Chem. Int. Ed., 2006, 45: 4138 -4142
[45] Lee J, Lee J I, Lee J W, Chu H Y. Organic Electronics, 2010, 11: 1159-1164
[46] Ikai M, Tokito S, Sakamoto Y, Suzuki T, Taga Y. Appl. Phys. Lett., 2001, 79: 156-158
[47] Tao Y T, Wang Q, Yang C L, Wang Q, Zhang Z Q, Zou T T, Qin J G, Ma D G. Angew. Chem. Int. Ed., 2008, 47: 8104 -8107
[48] Zhou G J, Wang Q, Ho C L, Wong W Y, Ma D G, Wang L X, Lin Z Y. Chem. Asian J., 2008, 3: 1830 -1841
[49] Zhou G J, Ho C L, Wong W Y, Wang Q, Ma D G, Wang L X, Lin Z Y, Marder T B, Beeby A. Adv. Funct. Mater., 2008, 18: 499-511
[50] Wong W Y, Ho C L, Gao Z Q, Mi B X, Chen C H, Cheah K W, Lin Z Y. Angew. Chem. Int. Ed., 2006, 45: 7800 -7803
[51] Ho C L, Wang Q, Lam C S, Wong W Y, Ma D G, Wang L X, Gao Z Q, Chen C H, Cheah K W, Lin Z Y. Chem. Asian J., 2009, 4: 89-103
[52] Zhang X W, Chen Z, Yang C L, Li Z G, Zhang K, Yao H Q, Qin J G, Chen J W, Gao Y. Chemical Physics Letters, 2006, 422: 386-390
[53] Zhang K, Chen Z, Yang C L, Zhang X W, Tao Y T, Duan L, Chen L, Zhu L, Qin J G, Gao Y. J. Mater. Chem., 2007, 17: 3451-3460
[54] Yang C L, Zhang X W, You H, Zhu L Y, Chen L Q, Tao Y T, Ma D G, Shuai Z G, Qin J G. Adv. Funct. Mater., 2007, 17: 651-661
[55] You Y, An C G, Lee D S, Kim J J, Park S Y. J. Mater. Chem., 2006, 16: 4706-4713
[56] Bettington S, Tavasli M, Bryce M R, Beeby A, Atter H A, Monkman A P. Chem. Eur. J., 2007, 13: 1423-1431
[57] Xie H Z, Liu M W, Wang O Y, Zhang X H, Lee C S, Hung L S, Lee S T, Teng P F, Kwong H L, Zheng H, Che C M. Adv. Mater., 2001, 13: 1245-1248
[58] Kinggts K A, Stevenson S G, Shipley C P, Lo S C, Olsen S, Harding R E, Gambino S, Burn P L, Samuel D W. J. Mater. Chem., 2008, 18: 2121-2130
[59] Zhou G J, Wong W Y, Yao B, Xie Z Y, Wang L X. J. Mater. Chem., 2008, 18: 1799-1809
[60] Lo S C, Namdas E B, Shipley C P, Markham J P J, Anthopolous T D, Burn P L, Samuel D W. Organic Electronics, 2006, 7: 85-89
[61] Paulose B M J S, Rayabarapu D K, Duan J P, Cheng C H. Adv. Mater., 2004, 16: 2003-2007
[62] Kang D M, Kang J W, Park J W, Jung S O, Lee S H, Park H D, Kim Y H, Shin S C, Kim J J, Kwon S K. Adv. Mater., 2008, 20: 2003-2007
[63] Gao Z Q, Mi B X, Tam H L, Cheah K W, Chen C H, Wong M S, Lee S T, Lee C S. Adv. Mater., 2008, 20: 774-778
[64] Mi B X, Wang P F, Gao Z Q, Lee C S, Lee S T, Hong H L, Chen X M, Wong M S, Xia P F, Cheah K W, Chen C H, Huang W. Adv. Mater., 2009, 21: 339-343
[65] Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H. Adv. Mater., 2005, 17: 285-288
[66] Tokito S, Iijima T, Suzuri Y, Kita H, Tsuzuki T, Sato F. Appl. Phys. Lett., 2003, 83: 569-571
[67] Wu L L, Sun I W, Yang C H. Polyhedron, 2007, 26: 2679-2685
[68] Ren X F, Kondakova M E, Giesen D J, Rajeswaran M, Madaras M, Lenhart W C. Inorg. Chem., 2010, 49: 1301-1303
[69] Baldo M A, Brien D F O, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395: 151-154
[70] Adachi S, Baldo M A, Forrest S R, Thompson M E, Kwong R C. Appl. Phys. Lett., 2001, 78: 1622-1624
[71] Huang Q, Reineke S, Waler K, Pfeiffer M, Leo K. Appl. Phys. Lett., 2006, 89: art. no. 263512
[72] Zhou G J, Wong W F, Yao B, Xie Z Y, Wang L X. Angew. Chem. Int. Ed., 2007, 46: 1149 -1151
[73] Ho C L, Wong W Y, Gao Z Q, Chen C H, Cheah K W, Yao B, Xie Z Y, Wang Q, Ma D G, Wang L X, Yu X M, Kwok H S, Lin Z Y. Adv. Funct. Mater., 2008, 18: 319-331
[74] Huang J S, Watanabe T, Ueno K, Yang Y. Adv. Mater., 2007, 19: 739-743
[75] Jiang C Y, Yang W, Peng J B, Xiao S, Cao Y. Adv. Mater., 2004, 16: 537-541
[76] Liang B, Jiang C Y, Chen Z, Zhang X J, Shi H H, Cao Y. J. Mater. Chem., 2006, 16: 1281-1286
[77] Kim D U, Paik S H, Kim S H, Tak Y H, Kim S D, Kim K D, Kim K H, Ko T H, Yoon U C, Han Y S, Jeong Y C, Park L S. Current Applied Physics, 2006, 6: 805-807
[78] You Y, An C G, Kim J J, Park S Y. J. Org. Chem., 2007, 72: 6241-6246
[79] Xu M L, Li M T, Hong Z R, Li W L, An Z W, Zhou Q. Optical Materials, 2006, 28: 1025-1028
[80] Xu M L, Wang G Y, Zhou R, An Z W, Zhou Q, Li W L. Inorganica Chimica Acta, 2007, 360: 3149-3154
[81] Rayabarapu D K, Paulose B M J S, Duan J P, Duan J P, Cheng C H. Adv. Mater., 2005, 17: 349-353
[82] Lee S J, Lee J S, Hwang K J, Kim Y K, Kim Y S, Park N G, Shin E J, Lee S H. Current Applied Physics, 2005, 5: 43-46
[83] Zhang G L, Liu Z H, Guo H Q. Chinese Chemical Letters, 2004, 15: 1349-1352
[84] Ha Y, Seo J H, Kim Y K. Synthetic Metals, 2008, 158: 548-552
[85] Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A, Thompson M E, Forrest S R. Appl. Phys. Lett., 2001, 79: 2082-2084
[86] Holmes R J, D'Andrade B W, Forrest S R, Ren X, Li J, Thompson M E. Appl. Phys. Lett., 2003, 83: 3813-3820
[87] Lin J J, Liao W S, Huang H J, Wu F I, Cheng C H. Adv. Funct. Mater., 2008, 18: 485-491
[88] Lee S J, Park K M, Yang K, Kang Y J. Inorg. Chem., 2009, 48: 1030-1037
[89] Seo H J, Yoo K M, Song M, Park J S, Jin S H, Kim Y I, Kim J J. Organic Electronics, 2010, 11: 564-572
[90] Zhang X J, Jiang C Y, Mo Y Q, Xu Y H, Shi H H, Cao Y. Appl. Phys. Lett., 2006, 88: art. no. 051116
[91] Chew S, Lee C S, Lee S T, Wang P F, He J, Pan J, Zhang X H, Kwong H L. Appl. Phys. Lett., 2006, 88: art. no. 093510
[92] Coughlin F J, Westrol M S, Oyler K D, Byrne N, Krami C, Colman E Z, Lowry M S, Bernhard S. Inorg. Chem., 2008, 47: 2039-2048
[93] Yook K S, Jeon S O, Joo C W, Lee J Y. Organic Electronics, 2009, 10: 170-173
[94] Park G Y, Seo J H. Journal of the Korean Physical Society, 2007, 50: 1729-1734
[95] Holmes R J, Forrest S R, Sajoto T, Tamayo A, Kjurovich P I, Thompson M E, Brooks J, Tung Y J, D'Andrade B W, Weaver M S, Kwong R C, Brown J J. Appl. Phys. Lett., 2005, 87: art. no. 243507
[96] Haneder S, Como E D, Feldmann J, Lupton J M, Lennartz C, Erk P, Fuchs E, Molt O, Münster I, Schildknecht C, Wagenblast G. Adv. Mater., 2008, 20: 3325-3330
[97] Lo S C, Shipley C P, Bera R N, Harding R E, Cowley A R, Burn P L, Samuel D W. Chem. Mater., 2006, 18: 5119-5129
[98] Lo S C, Bera R N, Harding R E, Burn P L, Samuel D W. Adv. Funct. Mater., 2008, 18: 3080-3090
[99] Yang C H, Li S W, Chi Y, Cheng Y M, Yeh Y S, Chou P T, Lee G H, Wang C H, Shu C F. Inorg. Chem., 2005, 44: 7770-7780
[100] Chiu Y C, Hung J Y, Chi Y, Chen C C, Chang C H, Wu C C, Cheng Y M, Yu Y C, Lee G H, Chou P T. Adv. Mater., 2008, 20: 1-5
[101] Mi B X, Gao Z Q, Liao Z J, Huang W, Chen C H. Sci. China Chem., 2010, 53(8): 1679-1694
[102] 密保秀(Mi B X), 廖章金(Liao Z J), 高志强(Gao Z Q), 黄维(Huang W), 陈金鑫(Chen C H). 中国科学: 化学 (Scientia Sinica Chimica), 2010, 40: 1459-1477
[103] Service R F. Science, 2005, 310: 1762-1763
[104] Lai S L, Tao S L, Chan M Y, Ng T W, Lee C S, Zhang X H, Lee S T. Organic Electronics, 2010, 11: 1511-1515

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[15] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
阅读次数
全文


摘要

小分子铱配合物及其电致发光