English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1583-1590   后一篇

• 综述与评论 •

碳纳米管/半导体纳米复合材料的光电化学特性及其应用

王娟, 刘颖, 张伟德*   

  1. 华南理工大学化学与化工学院 广州 510640
  • 收稿日期:2010-10-01 修回日期:2010-12-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 张伟德 E-mail:zhangwd@scut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20773041,21043005)和教育部高等学校博士点基金项目(No. 20070561008)资助

Photoelectrochemical Properties and Applications of Carbon Nanotubes/Semiconductor Nanocomposites

Wang Juan, Liu Ying, Zhang Weide*   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2010-10-01 Revised:2010-12-01 Online:2011-08-24 Published:2011-07-25

光电化学过程是在光作用下的电化学过程,它是光伏电池,光电催化等实际应用的基础,是当前十分活跃的研究领域。碳纳米管具有很高的热稳定性,良好的导电能力,大的比表面积,被认为是半导体纳米粒子的有效载体,其独特的一维结构可以为电子提供有效的传输路径。碳纳米管与半导体材料复合,能实现碳纳米管和半导体在结构和性能上的协同,近年来在光电化学领域受到了广泛的关注。本文基于国内外最新研究进展,结合本课题组的研究成果,综述了碳纳米管/半导体复合材料的光电协同作用机理及其在太阳能电池、光电催化降解污染物、光电协同分解水制氢领域中的应用。

Photoelectrochemical process is an electrochemical process under light irradiation, which is a very active research field currently. It is also the base of practical applications for photovoltaic cells, photoelectrocatalysis and so on. The high performance photoelectrochemical devices are strongly dependent on advanced semiconductors or their nanocomposites with high quantum efficiency. On the other hand, because of their good chemical and thermal stability, high electrical conductivity and large surface area, carbon nanotubes (CNTs) have been used as effective supports for semiconductors, and their unique one-dimensional geometric structure provides effective transmission path for electrons. Moreover, carbon nanotube/semiconductor nanocomposites which have attracted great attentions usually exhibit synergistic effect for high photoeletrochemical response. The recombination of photo-induced electrons and holes will be restrained further with the applied bias voltage, thus facilitates the transfer of electrons to the external circuit. In this review paper, we summarize the progress of the recently published literatures and our findings on photoelectrochemical properties and applications based on carbon nanotubes/semiconductor nanocomposites. The enhancement mechanism for the high photoelectrochemical performance of the nanocomposites is discussed. The applications including solar cells, photoelectrochemical degradation of pollutants and splitting of water for hydrogen generation are introduced in details. The prospect and challenge to the material science and future applications are also discussed.

Contents
1 Introduction
2 Mechanism of photoelectrochemical synergistic effect of CNTs/semiconductor nanocomposites
2.1 Synergistic effect based on characteristics of CNTs and semiconductor
2.2 Synergistic effect based on light irradiation and applied potential
3 Applications
3.1 Solar cells
3.2 Photoelectrochemical degradation of pollutants
3.3 Splitting of water for hydrogen generation
4 Conclusion and prospect

中图分类号: 

()

[1] O'Regan B, Grtzel M. Nature, 1991, 353: 737-740
[2] Iijima S. Nature, 1991, 354: 56-58
[3] Baughman R H, Zakhidov A A, de Heer W A, Science, 2002, 297: 787-792
[4] Constantopoulos K T, Shearer C J, Ellis A V, Voelcker N H, Shapter J G. Adv. Mater., 2010, 22: 557-571
[5] Ho Y M, Zheng W T, Li Y A, Liu J W, Qi J L. J. Phys. Chem. C, 2008, 112: 17702-17708
[6] Zhang W D, Phang I Y, Liu T X. Adv. Mater., 2006, 18: 73-77
[7] Zhang W D, Phang I Y, Shen L, Chow S Y, Liu T X. Macromol. Rapid Commun., 2004, 25: 1860-1864
[8] Kim Y T, Tadai K, Mitani T. J. Mater. Chem., 2005, 15: 4914-4921
[9] Fan Z, Chen J H, Cui K Z, Sun F, Xu Y, Kuang Y F. Electrochim. Acta, 2007, 52: 2959-2965
[10] Zhang W D, Chen J. Pure Appl. Chem., 2009, 81: 2317-2325
[11] Ye J S, Cui H F, Liu X, Lim T M, Zhang W D, Sheu F S. Small, 2005, 1: 560-565
[12] Xu B, Zhang W D. Electrochim. Acta, 2010, 55: 2859-2864
[13] Jiang L C, Zhang W D. Electroanalysis, 2009, 21: 1811-1815
[14] Jang L C, Zhang W D. Biosens. Bioelectron., 2010, 25: 1402-1407
[15] Chen J, Zhang W D, Ye J S. Electrochem. Commun., 2008, 10: 1268-1271
[16] Xu B, Ye M L, Yu Y X, Zhang W D. Anal. Chim. Acta, 2010, 674: 20-26
[17] Chen C H, Liang Y H, Zhang W D. J. Alloy Compd., 2010, 501: 168-172
[18] Gao B, Chen G Z, Puma G L. Appl. Catal. B, 2009, 89: 503-509
[19] Wang W D, Serp P, Kalck P, Silva C G, Faria J L. J. Mol. Catal. A: Chem., 2005, 235: 194-199
[20] Wang W D, Serp P, Kalck P, Silva C G, Faria J L. Mater. Res. Bull., 2008, 43: 958-967
[21] Gao B, Chen G Z, Puma G L. Appl. Catal. B, 2009, 89: 503-509
[22] Liu S, Li J, Shen Q, Cao Y, Guo X, Zhang G, Feng C, Zhang J, Liu Z, Steigerwald M L, Nuckolls C. Angew. Chem. Int. Ed., 2009, 48: 4759-4762
[23] Unalan H E, Hiralal P, Kuo D, Parekh B, Amaratunga G, Chhowalla M. J. Mater. Chem., 2008, 18: 5909-5912
[24] Zhang W D, Xu B, Jiang L C. J. Mater. Chem., 2010, 20: 6383-6391
[25] Zhang W D, Jiang L C, Ye J S. J. Phys. Chem. C, 2009, 113: 16247-16253
[26] Jiang L C, Zhang W D. Electrochim. Acta, 2010, 56: 406-411
[27] 肖信(Xiao X), 张伟德(Zhang W D). 化学进展(Prog. Chem. ), 2011, 23 (4): 657-668
[28] Deepa M, Gakhar R, Joshi A G, Singh B P, Srivastava A K. Electrochim. Acta, 2010, 55: 6731-6742
[29] Kongkanand A, Dominguez R M, Kamat P V. Nano Lett., 2007, 7 (3): 676-680
[30] Kongkanand A, Kamat P V. ACS Nano, 2006, 1 (1): 13-21
[31] Buterfield I M, Christensen P A, Hamnett A, Shaw K E, Walker G M, Walker S A. J. Appl. Electrochem., 1997, 27 (4): 385-395
[32] Quan X, Yang S, Ruan X, Zhao X. Environ. Sci. Technol., 2005, 39 (10): 3770-3775
[33] Jang S R, Vittal R, Kim K J. Langmuir, 2004, 20: 9807-9810
[34] Lee T Y, Alegaonkar P S, Yoo J B. Thin Solid Films, 2007, 515: 5131-5135
[35] Lee K M, Hu C W, Chen H W, Ho K C. Sol. Energy Mater. Sol. Cells, 2008, 92: 1628-1633
[36] Lee W, Lee J, Lee S, Yi W, Han S H, Cho B W. Appl. Phys. Lett., 2008, 92 (15): 152510-152513
[37] Lee H J, Yoon S W, Kim E J, Park J. Nano Lett., 2007, 3 (7): 778-784
[38] Landi B J, Castro S L, Ruf H J, Evans C C M, Bailey S G, Raffaelle R P. Sol. Energy Mater. Sol. Cells, 2005, 87: 733-746
[39] Hasobe T, Fukuzumi S, Kamat P V. Angew. Chem. Int. Ed., 2006, 45: 755-759
[40] Shu Q K, Wei K J, K L Wang, Zhu H W, Li Z, Jia Y, Gui X C, Guo N, Li X M, Ma C, Wu D H. Nano Lett., 2009, 12 (9): 4338-4342
[41] 李达钱(Li D Q), 陈金媛(Chen J Y). 浙江工业大学学报 (Journal of Zhejiang University of Technology), 2006, 34 (4): 369-372
[42] Jiang G D, Lin Z F, Zhu L H, Ding Y B, Tang H Q. Carbon, 2010, 48: 3369-3375
[43] 李家麟(Li J L), 方涛(Fang T), 李晓勤(Li X Q), 罗永松(Luo Y S). 华中师范大学学报 (Journal of Central China Normal University), 2005, 39 (4): 505-508
[44] Zhang F J, Chen M L, Wu W C. New Carbon Mater., 2010, 25 (5): 348-356
[45] Fujishima A, Honda K. Nature, 1972, 238 (5358): 37-39
[46] Alexander J C, Tang J W, Leng W H, James R D, David R K. J. Phys. Chem. C, 2010, 114: 4208-4214
[47] Yang X Y, Abraham W, Wang G M, Alissa S, Robert C F, Qian F, Zhang J Z, Li Y. Nano Lett., 2009, 9: 2331-2336
[48] Brian C, Bjorn M, Eric M, Yan Y F, Bobby T, Kim J, Mowafak A J. J. Phys. Chem. C, 2008, 112: 5213-5220
[49] Hu Y S, Alan K S, Forman A J, Daniel H, Park J N, Eric W M. Chem. Mater., 2008, 20: 3803-3805
[50] Park J, Choi W Y. J. Phys. Chem. C, 2009, 113: 20974-20979
[51] Dai K, Peng T Y. Ke D N, Wei B Q. Nanotechnology, 2009, 20: art. no. 125603
[52] Ou Y, Lin J D, Fang S M, Liao D W. Chem. Phys. Lett., 2006, 429: 199-203
[53] Wu R J, Ju Y D, Jeng C C. J. Nanosci. Nanotechnol., 2010, 10 (7): 4213-4220
[54] Li H P, Zhang X Y, Cui X L. Chin. J. Inorg. Chem., 2009, 25 (11): 1935-1938
[55] Bandow S, Rao A M, Williams K A, Thess A, Smalley R E, Eklund P C. J. Phys. Chem. B, 1997, 101: 8839-8842
[56] Rinzler A G, Liu J, Nikolaev P, Huffman C B. Appl. Phys. A, 1998, 67: 29-37

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[7] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[10] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[11] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[12] 张旭强, 吕功煊. 光电催化分解水Ⅲ-Ⅴ族半导体光电极薄膜保护策略[J]. 化学进展, 2020, 32(9): 1368-1375.
[13] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[14] 倪鑫, 周扬, 谭瑞琴, 况永波. 光电化学水分解中铁酸盐光阴极的制备与改性[J]. 化学进展, 2020, 32(10): 1515-1534.
[15] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4): 516-535.