English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1566-1581 前一篇   

所属专题: 计算化学

• 放射化学专辑 •

锕系计算化学进展

王东琪1,2*, Wilfred F. van Gunsteren1   

  1. 1. Laboratory of Physical Chemistry,Swiss Federal Institute of Technology, ETH, CH-8093 Zürich, Switzerland;
    2. 中国科学院高能物理研究所 北京 100049
  • 收稿日期:2011-06-01 修回日期:2011-06-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail:wangd@igc.phys.chem.ethz.ch;dwang@ihep.ac.cn E-mail:wangd@igc.phys.chem.ethz.ch;dwang@ihep.ac.cn

Recent Advances in Computational Actinide Chemistry

Dongqi Wang1,2, Wilfred F. van Gunsteren1   

  1. 1. Laboratory of Physical Chemistry,Swiss Federal Institute of Technology, ETH, CH-8093 Zürich, Switzerland;
    2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2011-06-01 Revised:2011-06-01 Online:2011-07-24 Published:2012-03-15

本文简要总结了过去十年中应用量子力学方法研究锕系化学的若干结果。我们将其大致归为几何与电子结构和化学反应两类。对于前者,简要总结了锕系元素化合物中的An—O键和金属—金属键;而后者则涉及水合反应和配体交换反应,歧化反应,氧化反应,铀酰离子的还原,氢胺化反应以及铀的叠氮化合物的光解反应等。

We briefly reviewed the recent advances in computational actinide chemistry during the past ten years. They cover two issues: the geometrical and electronic structures, and reactions. The former addresses the An—O and M—An (M is another metal atom including An) bonds in the actinide molecular systems, and the latter the hydration and ligand exchange, the disproportionation, the oxidation, the reduction of uranyl, hydroamination, and the photolysis of uranium azide.

Contents
1 Introduction
2 Treatment of relativistic effects
3 Computational Models
3.1 Density functional theory
3.2 Wavefunction based ab initio methods
4 Applications in actinide chemistry
4.1 The role of 5f orbitals
4.2 Geometry and electronic structure
4.3 Reactions
5 Conclusion and outlook
6 Acknowledgement

 

()


[1] Cotton S. Lanthanide and Actinide Chemistry, 2006, John Wiley & Sons, Ltd.

[2] Shannon R. D. Acta. Crystallogr. Sect. A, 1976, 32: 751-767

[3] Arko A J, Joyce J J, Havela L. The Chemistry of the Actinide and Transactinide Elements, 3rd Ed. (Eds. Morss L R, Edelstein N M, Fuger J), Springer, 2008

[4] Burns C J, Eisen M S. The Chemistry of the Actinide and Transactinide Elements, 3rd Ed. (Eds. Morss L R, Edelstein N M, Fuger J), Springer, 2008

[5] 刘文剑(Liu W J). 化学进展(Prog. Chem. ), 2007, 19: 833-851

[6] Liu W. Mol. Phys., 2010, 108: 1679-1706

[7] Li J, Hu H S, Lyon J T, Andrews L. Angew. Chem. Int. Ed. , 2007, 46: 9045-9049

[8] Lyon J T, Hu H S, Andrews L, Li J. PNAS, 2007, 104: 18919-18924

[9] 胡憾石(Hu H S), 吴国是(Wu G S), 李隽(Li J). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31 (Suppl. ): 25-34

[10] Xiao H, Hu H S, Schwarz W H E, Li J. J. Phys. Chem. A, 2010, 114: 8837-8844

[11] Hu S W, Wang X Y, Chu T W, Liu X Q. J. Phys. Chem. A, 2008, 112: 8877-8883

[12] Hu S W, Wang X Y, Chu T W, Liu X Q. J. Phys. Chem. A, 2009, 113: 9243-9248

[13] Gagliardi L, Roos B O. Chem. Soc. Rev., 2007, 36: 893-903

[14] Schreckenbach G, Hay P J, Martin R L. J. Comput. Chem., 1999, 20: 70-90

[15] Runde W. Los Alamos Sci. , 2000, 26: 392-411

[16] Kaltsoyannis N. Chem. Soc. Rev., 2003, 32: 9-16

[17] May I, Copping R, Cornet S M, Talbot-Eeckelears C E, Gaunt A J, John G H, Redmond M P, Sharrad C A, Sutton A D, Collison D, Fox O D, Jones C J, Sarsfield M J, Taylor R J. J. Alloys Compd., 2007, 444/445: 383-386

[18] Schreckenbach G, Shamov G A. Acc. Chem. Res., 2010, 43: 19-29

[19] Heaven M C. Phys. Chem. Chem. Phys., 2006, 8: 4497-4509

[20] Pyykk P. Chem. Rev., 1988, 88: 563-594

[21] Kaltsoyannis N, Hay P J, Li J, Blaudeau J P, Bursten B E. The Chemistry of The Actinide and Transactinide elements, 3rd Ed. ( Eds. Morss L R, Edelstein N M, Fuger J). 2006

[22] Wezenbeek E M, Baerends E J, Ziegler T. Inorg. Chem., 1995, 34: 238-246

[23] Saue T, Faegri K, Gropen O. Chem. Phys. Lett., 1996, 263: 360-366

[24] Bouten R, Baerends E J, van Lenthe E, Visscher L, Schreckenbach G, Ziegler T. J. Phys. Chem. A, 2000, 104: 5600-5611

[25] Schreckenbach G, Wolff S K, Ziegler T. J. Phys. Chem. A, 2000, 104: 8244-8255

[26] Suzuki S, Li M F, Ariizumi T. J. Phys. Soc. Jpn. , 2008, 77: art. no. 074703

[27] De Jong W A, Visscher L, Nieuwpoort W C. J. Mol. Struc. (Theochem), 1999, 458: 41-52

[28] Lee M, Kim M S. ChemPhysChem, 2006, 7: 2064-2066

[29] Hay P J, Martin R L, Schreckenbach G. J. Phys. Chem. A, 2000, 104: 6259-6270

[30] Schimmelpfennig B, Privalov T, Wahlgren U, Grenthe I. J. Phys. Chem. A, 2003, 107: 9705-9711

[31] Van Lenthe E, Baerends E J, Snijders J G. J. Chem. Phys., 1993, 99: 4597-4610

[32] Van Lenthe E, Baerends E J, Snijders J G. J. Chem. Phys., 1994, 101: 9783-9792

[33] Van Lenthe E, Ehlers A E, Baerends E J. J. Chem. Phys., 1999, 110: 8943-8953

[34] Barysz M, Sadlej A J. J. Mol. Struct. (Theochem), 2001, 573: 181-200

[35] Christiansen P A, Ermler W C, Pitzer K S. Annu. Rev. Phys. Chem. , 1985, 36: 407-432

[36] Dolg M. Theor. Comput. Chem., 2002, 11: 793-862

[37] Iché-Tarrat N, Marsden C J. J. Phys. Chem. A, 2008, 112: 7632-7642

[38] Odoh S O, Schreckenbach G. J. Phys. Chem. A, 2010, 114: 1957-1963

[39] Beck E V, Brozell S R, Blaudeau J P, Burggraf L W, Pitzer R M. J. Phys. Chem. A, 2009, 113: 12626-12631

[40] Gibson J K, Haire R G, Marcalo J, Santos M, de Matos A P, Mrozik M K, Pitzer R M, Bursten B E. Organometallics, 2007, 26: 3947-3956

[41] Mazzanti M, Wietzke R, Pécaut J, Latour J M, Maldivi P, Remy M. Inorg. Chem., 2002, 41: 2389-2399

[42] Castro-Rodrigues I, Olsen K, Gantzel P, Meyer K. J. Am. Chem. Soc., 2003, 125: 4565-4571

[43] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865-3868. Errata, Phys. Rev. Lett., 1997, 78: 1396-1396

[44] Adamo C, Barone V. J. Chem. Phys., 1999, 110: 6158-6170

[45] Tao J M, Perdew J P, Staroverov V N, Scuseria G E. Phys. Rev. Lett., 2003, 91: art. no. 146401

[46] (a) Becke A D. Phys. Rev. A, 1988, 38: 3098-3100; (b) Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785-789

[47] Georges A, Kotliar G, Krauth W, Rozenberg M J. Rev. Mod. Phys., 1996, 68: 13-125

[48] (a) Anisimov V I, Poteryaev A I, Korotin M A, Anokhin A O, Kotliar G. J. Phys. : Condens. Matter, 1997, 9: 7359; (b) Lichtenstein A I, Katsnelson M I. Phys. Rev. B, 1998, 57: 6884

[49] (a) Galitskii V M. Zh. Eksp. Teor. Fiz., 1958, 34: 151; (b) Kanamori J. Prog. Theor. Phys. , 1963, 30: 275; (c) Bickers N E, Scalapino D J, White S R. Phys. Rev. Lett., 1989, 62: 961; (d) Bickers N E, Scalapino D. J. Ann. Phys. (N. Y. ), 1991, 193: 206

[50] Pourovskii L V, Katsnelson M I, Lichtenstein A I. Phys. Rev. B, 2005, 72: art. no. 115106

[51] Silva-Junior M R, Schreiber M, Sauer S P A, Thiel W. J. Chem. Phys., 2008, 129: art. no. 104103

[52] Gao J, Liu W, Song B, Liu C. J. Chem. Phys., 2004, 121: 6658-6666

[53] Vallet V, Macak P, Wahlgren U, Grenthe I. Theor. Chem. Acc. , 2006, 115: 145-160

[54] Helgaker T, Jrgensen P, Olsen J. Molecular Electronic Structure Theory, Chichester: Wiley, 2000

[55] Head-Gordon M, Pople J A, Frisch M J. Chem. Phys. Lett., 1988, 153: 503-506

[56] Roos B O, Taylor P R, Siegbahn E M. Chem. Phys., 1980, 48: 157-173

[57] Huber S M, Shahi A R M, Aquilante F, Cramer C J, Gagliardi L. J. Chem. Theory Comput., 2009, 5: 2967-2976

[58] (a) Andersson K, Malmqvist P A, Roos B O, Sadlej A J, Wolinski K. J. Phys. Chem., 1990, 94: 5483-5488;(b) Andersson K, Malmqvist P A, Roos B O. J. Chem. Phys., 1992, 96: 1218-1226

[59] Szabo A, Ostlund N S. Modern Quantum Chemistry, New York: McGraw-Hill, 1989

[60] Mukherjee D, Pal S. Adv. Quantum Chem., 1989, 20: 291-373

[61] Kaldor U, Eliav E. Adv. Quantum Chem., 1998, 31: 313-336

[62] Borschevsky A, Eliav E, Vilkas M J, Ishikawa Y, Kaldor U. Eur. Phys. J. D, 2007, 45: 115-119

[63] Malrieu J P, Durand P, Daudey J P. J. Phys. A, 1985, 18: 809-813

[64] Koren T, Eliav E, Ishikawa Y, Kaldor U. J. Mol. Struc: THEOCHEM, 2006, 768: 127-132

[65] Bouchet J, Jomard G. J. Alloys Compd., 2007, 444/445: 271-273

[66] Elgazzar S, Rusz J, Oppeneer P M. Phys. Rev. B, 2010, 81: art. no. 235117

[67] Hotta T. J. Alloys Compd., 2007, 444/445: 162-167

[68] Dremov V V, Sapozhnikov F A, Samarin S I, Modestov D G, Chizhkova N E. J. Alloys Compd., 2007, 444/445: 197-201

[69] Stan M, Ramirez J C, Cristea P, Hu S Y, Deo C, Uberuaga B P, Srivilliputhur S, Rudin S P, Wills J M. J. Alloys Compd., 2007, 444/445: 415-423

[70] Jomard G, Berlu L, Rosa G, Faure P, Nadal J, Baclet N. J. Alloys Compd., 2007, 444/445: 310-313

[71] Gryaznov D, Heifetsa E, Sedmidubsky D. Phys. Chem. Chem. Phys., 2010, 12: 12273-12278

[72] Ingram K I M, Kaltsoyannis N, Gaunt A J, Neu M P. J. Alloys Compd., 2007, 444/445: 369-375

[73] Gaunt A J, Scott B L, Neu M P. Angew. Chem. Int. Ed., 2006, 45: 1638-1641

[74] Ingram K I M, Tassell M J, Gaunt A J, Kaltsoyannis N. Inorg. Chem., 2008, 47: 7824-7833.

[75] Roger M, Belkhiri L, Thuéry P, Arliguie M, Fourmigué A, Boucekkine M, Ephritikine M. Organometallics, 2005, 24: 4940-4952

[76] Arnold P L, Turner Z R, Kaltsoyannis N, Pelekanaki P, Bellabarba R M, Tooze R P. Chem. Eur. J., 2010, 16: 9623-9629

[77] Tsipis A C, Kefalidis C E, Tsipis C A. J. Am. Chem. Soc., 2008, 130: 9144-9155

[78] Castro L, Yahia A, Maron L. ChemPhysChem, 2010, 11: 990-994

[79] McGlynn S P, Smith J K, Neely W C. J. Chem. Phys., 1961, 35: 105-116

[80] Dyall K G. Mol. Phys., 1999, 96: 511-518

[81] Straka M, Dyall K G, Pyykk P. Theor. Chem. Acc., 2001, 106: 393-403

[82] Berard J J, Schreckenbach G, Arnold P L, Patel D, Love J B. Inorg. Chem., 2008, 47: 11583-11592

[83] Pan Q J, Schreckenbach G. Inorg. Chem., 2010, 49: 6509-6517

[84] Shamov G A, Schreckenbach G. J. Phys. Chem. A, 2005, 109: 10961-10974. Erratum, J. Phys. Chem. A, 2006, 110: 12072

[85] Infante I, Eliav E, Vilkas M J, Ishikawa Y, Kaldor U, Visscher L. J. Chem. Phys., 2007, 127 : art. no. 124308

[86] Ruipérez F, Danilo C, Réal F, Flament J P, Vallet V, Wahlgren U. J. Phys. Chem. A, 2009, 113 : 1420-1428

[87] Gagliardi L, Grenthe I, Roos B O. Inorg. Chem., 2001, 40 : 2976-2978

[88] Docrat T I, Mosselmans J F W, Charnock J M, Whiteley M W, Collison D, Livens F R, Jones C, Edmiston M J. Inorg. Chem., 1999, 38: 1879-1882

[89] Vallet V, Privalov T, Wahlgren U, Grenthe I. J. Am. Chem. Soc., 2004, 126 : 7766-7767

[90] La Macchia G, Infante I, Raab J, Gibson J K, Gagliardi L. Phys. Chem. Chem. Phys., 2008, 10 : 7278-7283

[91] Santos M, Marcalo J, Leal J P, de Matos A P, Gibson J K, Haire R G. Int. J. Mass Spectr., 2003, 228 : 457-465

[92] Gibson J K, Haire R G, Marcalo J, Santos M, de Matos A P, Leal J P. J. Nucl. Mat., 2005, 344 : 24-29

[93] Gibson J K, Haire R G, Santos M, Marcalo J, de Matos A P. J. Phys. Chem. A, 2005, 109 : 2768-2781

[94] Santos M, Marcalo J, de Matos A P, Gibson J K, Haire R G. J. Phys. Chem. A, 2002, 106 : 7190-7194

[95] Haire R G. J. Alloys Compd., 2007, 444/445 : 63-71

[96] (a) Malmqvist P A, Pierloot K, Shahi A R M, Cramer C J, Gagliardi L. J. Chem. Phys., 2008, 128 : art. no. 204109 ;(b) Shahi A R M, Cramer C J, Gagliardi L. Phys. Chem. Chem. Phys., 2009, 11 : 10964-10972

[97] Infante I, Kovacs A, La Macchia G, Shahi A R M, Gibson J K, Gagliardi L. J. Phys. Chem. A, 2010, 114: 6007-6015

[98] Kovács A, Konings R J M, Raab J, Gagliardi L. Phys. Chem. Chem. Phys., 2008, 10: 1114-1117

[99] Santos M, Marcalo J, Leal J P, de Matos A P, Gibson J K, Haire R G. Int. J. Mass Spectrom., 2003, 228: 457-465

[100] Smith P K, Peterson D E. J. Chem. Phys., 1970, 52: 4963-4972

[101] Pyykk P, Li J, Runeberg N. J. Phys. Chem., 1994, 98: 4809-4813

[102] Kutepov A L. J. Alloys Compd., 2007, 444/445: 174-176

[103] Cotton F A, Murillo C A, Walton R A. Multiple Bonds Between Metal Atoms, 3rd ed. New York: Springer Science, 2005

[104] Minasian S G, Krinsky J L, Rinehart J D, Copping R, Tyliszczak T, Janousch M, Shuh D K, Arnold J. J. Am. Chem. Soc., 2009, 131: 13767-13783

[105] Cadenbach T, Gemel C, Schmid R, Halbherr M, Ysenko K, Cokoja M, Fischer R D. Angew. Chem. Int. Ed., 2009, 48: 3872-3876

[106] Liddle S T, McMaster J, Mills D P, Blake A J, Jones C, Woodul W D. Angew. Chem. Int. Ed., 2009, 48: 1077-1080

[107] Gagliardi L, Roos B O. Nature, 2005, 433: 848-851

[108] Roos B O, Malmqvist P, Gagliardi L. J. Am. Chem. Soc., 2006, 128: 17000-17006

[109] Wu X, Lu X. J. Am. Chem. Soc., 2007, 129: 2171-2177

[110] Infante I, Gagliardi L, Scuseria G E. J. Am. Chem. Soc., 2008, 130: 7459-7465

[111] Srivastava D, Garg S P, Goswami G L. J. Nucl. Mater., 1989, 161: 44-56

[112] Streit M, Ingold F. J. Eur. Ceram. Soc., 2005, 25: 2687-2692

[113] Yeamans C B, Silva G W C, Cerefice G S, Czerwinski K R, Hartmann T, Burrell A K, Sattelberger A P. J. Nucl. Mater., 2008, 374: 75-78

[114] Thomson R K, Cantat T, Scott B L, Morris D E, Batista E R, Kiplinger J L. Nature Chem., 2010, 2: 723-729

[115] Shibata H, Tsuru T, Hirata M, Kaji Y. J. Nucl. Mater., 2010, 401: 113-117

[116] Takano M, Akabori M, Arai Y, Minato K. J. Nucl. Mater., 2008, 376: 114-118

[117] (a) Heyd J, Scuseria G E, Ernzerhof M. J. Chem. Phys., 2003, 118: 8207-8215; (b) Heyd J, Scuseria G E. J. Chem. Phys., 2004, 120: 7274-7280

[118] Lim I S, Scuseria G E. Chem. Phys. Lett., 2008, 460: 137-140

[119] Petit L, Svane A, Szotek Z, Temmerman W M, Stocks G M. Phys. Rev. B, 2009, 80: art. no. 045124

[120] Svane A. Phys. Rev. B, 1996, 53: 4275-4286

[121] Samsel-Czekala M, Talik E, de V Du Plessis P, Tro Dc' R, Misiorek H, Sulkowski C. Phys. Rev. B, 2007, 76: art. no. 144426

[122] (a) Skanthakumar S, Antonio M R, Wilson R E, Soderholm L. Inorg. Chem., 2007, 46: 3485-3491; (b) Lindqvist-Reis P, Apostolidis C, Rebizant J, Morgenstern A, Klenze R, Walter O, Fanghanel T, Haire R G. Angew. Chem. Int. Ed., 2007, 46: 919-922; (c) Soderholm L, Antonio M R. The Chemistry of the Actinide and Transactinide Elements, vols. 4 and 5, 3rd ed. (Eds. Moss L R, Edelstein N M, Fuger J, Katz J J), Dordrecht: Springer, 2006. 3086-3198

[123] Galbis E, Hernández-Cobos J, den Auwer C, Le Naour C, Guillaumont D, Simoni E, Pappalardo R R, Marcos E S. Angew. Chem. Int. Ed., 2010, 49: 3811-3815

[124] Wiebke J, Moritz A, Cao X, Dolg M. Phys. Chem. Chem. Phys., 2007, 9: 459-465

[125] Yang T, Bursten B E. Inorg. Chem., 2006, 45: 5291-5301

[126] Hagberg D, Bednarz E, Edelstein N M, Gagliardi L. J. Am. Chem. Soc., 2007, 129: 14136-14137

[127] Lindqvist-Reis P, Klenze R, Schubert G, Fanghnel T. J. Phys. Chem. B, 2005, 109: 3077-3083

[128] Hagberg D, Karlstrm G, Roos B O, Gagliardi L. J. Am. Chem. Soc., 2005, 127: 14250-14256

[129] Bertolus M, Defranceschi M. J. Phys. Chem. B, 2006, 110: 19226-19232

[130] Frick R J, Hofer T S, Pribil A B, Randolf B R, Rode B M. J. Phys. Chem. A, 2009, 113: 12496-12503

[131] Gutowski K E, Dixon D A. J. Phys. Chem. A, 2006, 110: 8840-8856

[132] Gibson H K, Haire R G, Santos G, Marcalo J, de Matos A P. J. Phys. Chem. A, 2005, 109: 2768-2781

[133] Bühl M, Kabrede H, Diss R, Wipff G. J. Am. Chem. Soc., 2006, 128: 6357-6368

[134] Vallet V, Wahlgren U, Schimmelpfennig B, Szabó Z, Grenthe I. J. Am. Chem. Soc., 2001, 123: 11999-12008

[135] Cao Z, Balasubramanian K. J. Chem. Phys., 2009, 131: art. no. 164504

[136] Whlin P, Danilo C, Vallet V, Réal F, Flament J P, Wahlgren U. J. Chem. Theory Comput., 2008, 4: 569-577

[137] Farkas I, Bányai I, Szabó Z, Wahlgren U, Grenthe I. Inorg. Chem., 2000, 39: 799-805

[138] Szabó Z, Aas W, Grenthe I. Inorg. Chem., 1997, 36: 5369-5375

[139] Réal F, Vallet V, Wahlgren U, Grenthe I. J. Am. Chem. Soc., 2008, 130: 11742-11751

[140] Bühl M, Schreckenbach G, Sieffert N, Wipff G. Inorg. Chem., 2009, 48: 9977-9979

[141] Ikeda-Ohno A, Tsushima S, Takao K, Rossberg A, Funke H, Scheinost A C, Bernhard G, Yaita T, Hennig C. Inorg. Chem., 2009, 48: 11779-11787

[142] Wiebke J, Weigand A, Weissmann D, Glorius M, Moll H, Bernhard G, Dolg M. Inorg. Chem., 2010, 49: 6428-6435

[143] Whlin P, Vallet V, Wahlgren U, Grenthe I. Inorg. Chem., 2009, 48: 11310-11313

[144] Rotzinger F P. J. Chem. Theory Comput., 2008, 4: 1654-1658

[145] Clark D L, Conradson S D, Donohoe R J, Keogh D W, Morris D E, Palmer P D, Rogers R D, Tait C D. Inorg. Chem., 1999, 38: 1456-1466

[146] Shamov G A, Schreckenbach G. J. Am. Chem. Soc., 2008, 130: 13735-13744

[147] Shamov G A, Schreckenbach G, Vo T N. Chem. Eur. J., 2007, 13: 4932-4947

[148] (a)Gaillard C, Chaumont A, Billard I, Hennig C, Ouadi A, Georg S, Wipff G. Inorg. Chem., 2010, 49: 6484-6494;(b) de Andrade J, Bes E S, Stassen H. J. Phys. Chem. B, 2002, 106: 3546-3548;(c) Canongia-Lopes J N, Padua A A H. J. Phys. Chem. B, 2004, 108: 16893-16898;(d) Guilbaud P, Wipff G. J. Mol. Struct. THEOCHEM, 1996, 366: 55-63; (e) Baaden M, Berny F, Madic C, Wipff G. J. Phys. Chem. A, 2000, 104: 7659-7671

[149] Haschke J M, Allen T H, Morales L A. Science, 2000, 287: 285-287

[150] Sundararajan M, Campbell A J, Hillier I H. J. Phys. Chem. A, 2008, 112: 4451-4457

[151] Renshaw J C, Butchins L J C, Livens F R, May I, Charnock J M, Lloyd J R. Environ. Sci. Technol., 2005, 39: 5657-5660

[152] Steele H, Taylor R. J. Inorg. Chem., 2007, 46: 6311-6318

[153] Krot N N, Grigoriev M S. Russ. Chem. Rev., 2004, 73: 89-100

[154] Privalov T, Macak P, Schimmelpfennig B, Fromager E, Grenthe I, Wahlgren U. J. Am. Chem. Soc., 2004, 126: 9801-9808

[155] Moskaleva L V, Matveev A V, Dengler J, Rsch N. Phys. Chem. Chem. Phys., 2006, 8: 3767-3773

[156] Keller C. Comprehensive Inorganic Chemistry, vol. 5 Actinides (Eds Bailar J C, Emeleus H J, Nyholm R, Trotman-Dickenson A F). Pergamon: Oxford, 1973. 219-276

[157] Morss L R. The Chemistry of the Actinide Elements, 2nd Ed. vol. 2 (Eds Katz J J, Seaborg G T, Morss L R) . London: Chapman and Hall, 1986. 1278-1360

[158] Korzhavyi P A, Vitos L, Andersson D A, Johansson B. Nature Materials, 2004, 3: 225-228

[159] Carroll J J, Haug K L, Weisshaar J C, Blomberg M R A, Siegbahn P E M, Svensson M J. Phys. Chem., 1995, 99: 13955-13969

[160] Roos B O, Lindh R, Cho H G, Andrews L. J. Phys. Chem. A, 2007, 111: 6420-6424

[161] Lyon J T, Andrews L, Malmqvist P , Roos B O, Yang T, Bursten B E. Inorg. Chem., 2007, 46: 4917-4925

[162] Andrews L, Cho H G. J. Phys. Chem. A, 2005, 109: 6796-6798

[163] Cho H G, Lyon J T, Andrews L. J. Phys. Chem. A, 2008, 112: 6902-6907

[164] Hammer B, Hansen L B, Nrskov J K. Phys. Rev. B: Condens. Matter Mater. Phys., 1999, 59: 7413-7421

[165] Moskaleva L V, Matveev A V, Krüger S, Rsch N. Chem. Eur. J., 2006, 12: 629-634

[166] Rai D. Radiochim. Acta, 1984, 35: 97-106

[167] Yahia A, Arnold P L, Love J B, Maron L. Chem. Eur. J., 2010, 16: 4881-4888

[168] Nagaishi R, Katsumura Y, Ishigure K, Aoyagi H, Yoshida Z, Kimura T. J. Photochem. Photobiol. A, 2002, 146: 157-161

[169] Kannan S, Vaughn A E, Weis E M, Barnes C L, Duval P B. J. Am. Chem. Soc., 2006, 128: 14024-14025

[170] Szabo Z, Grenthe I. Inorg. Chem., 2007, 46: 9372-9378

[171] Pierloot K, van-Besien E, van-Lenthe E, Baerends E J. J. Chem. Phys., 2007, 126: art. no. 194311

[172] Denning R G. J. Phys. Chem. A, 2007, 111: 4125-4143

[173] Tsushima S. Inorg. Chem., 2009, 48: 4856-4862

[174] Tsushima S, Wahlgren U, Grenthe I. J. Phys. Chem. A, 2006, 110: 9175-9182

[175] Whittemore D O, Langmuir D. J. Chem. Eng. Data, 1972, 17: 288-290

[176] Guillaumont R, Fanghnel T, Fuger J, Grenthe I, Neck V, Palmer D A, Rand M H. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, New York: Elsevier Science Publishing Co. Inc., 2003. vol. 5

[177] Newton T W. The Kinetics of the Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium and Americium in Aqueous Solution; Technical Information Center, Office of Public Affairs, U. S. Energy and Development Administration: Oak Ridge, TN, 1975

[178] Wahlgren U, Tsushima S, Grenthe I. J. Phys. Chem. A, 2006, 110: 9025-9027

[179] (a) Stubbert B D, Stern C L, Marks T J. Organometallics, 2003, 22: 4836-4838; (b) Stubbert B D, Marks T J. J. Am. Chem. Soc., 2007, 129: 4253-4271;( c) Stubbert B D, Marks T J. J. Am. Chem. Soc., 2007, 129: 6149-6167

[180] Tobisch S. Chem. Eur. J., 2010, 16: 3441-3458

[1] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[2] 郄佳, 李明, 刘利, 梁英华, 崔文权*. g-C3N4光催化材料的第一性原理研究[J]. 化学进展, 2016, 28(10): 1569-1577.
[3] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[4] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.
[5] 张颖, 徐昕*. 新一代密度泛函方法XYG3[J]. 化学进展, 2012, 24(06): 1023-1037.
[6] 蒋鸿*. 带隙问题:第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(06): 910-927.
[7] 沈娟*, 金波, 蒋琪英, 钟国清, 霍冀川. 磷灰石晶体构型及其与生物分子相互作用的计算模拟研究[J]. 化学进展, 2012, 24(05): 737-746.
[8] 叶国安, 张虎. 核燃料后处理技术发展及其放射化学问题[J]. 化学进展, 2011, 23(7): 1289-1294.
[9] 饶林峰. 热力学和光谱学方法在锕系元素络合化学研究中的应用[J]. 化学进展, 2011, 23(7): 1295-1307.
[10] 羊衍秋, 罗顺忠, 杨通在, 郝樊华. 杯芳烃衍生物萃取剂分离An(Ⅲ)/Ln(Ⅲ)[J]. 化学进展, 2011, 23(7): 1345-1354.
[11] 陈靖, 王建晨. 从高放废液中去除锕系元素的TRPO 流程发展三十年[J]. 化学进展, 2011, 23(7): 1366-1371.
[12] 朱崇强 杨春晖 孙亮. 非线性光学晶体CdGeAs2点缺陷的研究*[J]. 化学进展, 2010, 22(0203): 315-321.
[13] 徐宇虹,尹鸽平,左朋建. 锂离子电池正极材料的第一性原理研究进展[J]. 化学进展, 2008, 20(11): 1827-1833.
[14] 刘文剑. 相对论量子化学新进展*[J]. 化学进展, 2007, 19(06): 833-851.
[15] 李震宇 贺 伟 杨金龙. 密度泛函理论及其数值方法新进展*[J]. 化学进展, 2005, 17(02): 192-202.
阅读次数
全文


摘要

锕系计算化学进展