English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1547-1557 前一篇   后一篇

• 放射化学专辑 •

辐射技术在环境保护中的应用

吴明红*, 刘宁, 徐刚, 卜葶葶, 何雅琴, 王亮   

  1. 上海大学射线应用研究所 上海 200444
  • 收稿日期:2010-12-01 修回日期:2011-03-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail: mhwu@staff.shu.edu.cn E-mail:mhwu@staff.shu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 40973073, 40830744, 410973073, 11025526)资助

Application of Radiation Technology in Environmental Protection

Wu Minghong*, Liu Ning, Xu Gang, Bu Tingting, He Yaqin, Wang Liang   

  1. Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
  • Received:2010-12-01 Revised:2011-03-01 Online:2011-07-24 Published:2012-03-15

由于高能电子束和γ射线本身具有的特性,其辐射技术在环境保护领域具有巨大的应用潜力。本文介绍了国内外利用辐射技术在废水、废气和固体废物(“三废”)处理中的研究和应用,涉及印染废水、造纸废水、硝基苯胺类物质、卤系阻燃剂类物质、环境内分泌干扰物和藻毒素的处理,燃煤尾气脱硫脱硝,以及挥发性有机物、污泥等方面的处理研究,并对辐射处理各种有机污染物的机理进行了探索和分析。表明辐射技术是处理“三废”的一种十分有效的方法。同时,讨论了辐射技术在环境处理应用中的有限性,并对该技术的研究和发展方向进行了展望。

The progress in the investigation of radiation technology applied in the environmental protection is reviewed. Radiation technology including electron beam and γ-ray irradiation has great potential in the field of environmental protection due to its special characteristics. The investigations and applications of radiation technology in the treatment of wastewater, waste gas and solid waste are introduced in this paper, including the treatment of printing and dyeing wastewater, papermaking wastewater, nitroanilines, halogenated flame retardants, endocrine disrupting chemicals, algal toxin, volatile organic contaminants and sludge etc and the removing of SOx and NOx in coal-fired and automobile exhaust. The degradation efficiency of these organic pollutants by electron beam or γ-ray radiolytic degradation is discussed in various conditions, such as different initial concentrations, irradiation doses, pH values, solvents, radiolysis systems and the addition of H2O2 etc. Besides, the radiolysis products of certain pollutants are listed and radiolytic degradation mechanisms of these organic pollutants are illustrated. These results demonstrated that radiation technology is an effective method to degrade the organic contaminants, especially the persistentorganic pollutants, OH and e-aq played significant roles in the radiolysis of organic pollutants. In addition, the limitations and the future tends of radiation technology applied in the environmental protection are also discussed.

Contents
1 Introduction
2 Applications of radiation technology in wastewater treatment
2.1 Printing and dyeing wastewater
2.2 Wastewater from papermill
2.3 Nitroanilines
2.4 Halogenated flame retardants
2.5 Endocrine disrupting chemicals
2.6 Algal toxin
3 Applications of radiation technology in waste gas treatment
3.1 Removal of sulfur dioxide and nitrogen oxides
3.2 Volatile organic contaminants
4 Applications of radiation technology in solid waste treatment
4.1 Sludge
4.2 Polymer solid waste
5 Conclusions and outlook

中图分类号: 

()


[1] 吴明红(Wu M H), 包伯荣(Bao B R). 辐射技术在环境保护中的应用(Application of Radiation Technology in Environmental Protection). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2002, 1-190

[2] Sakumoto A, Miyata T. Radiat. Phy. Chem., 1984, 24(1): 99-115

[3] Zhang S J, Yu H Q. Water Res., 2004, 38(2): 309-316

[4] Buxton G V, Greenstock C L, Helman W P, Ross A B. J. Phys. Chem. Ref. Data, 1988, (17): 513-886

[5] Craft T F, Eichholz G G. Int. J. Appl. Radiat. Isotopes, 1971, 22(9): 543-547

[6] Suzukia N, Miyataa T, Sakumotoa A, Hashimotoa S, Kawakami W. Int. J. Appl. Radiat. Isotopes, 1978, 29(2): 103-108

[7] Pikaev A K, Bludenko A V, Makarov I E, Ponomarev A V, Minin V N, Ponomarev V I, Linnik O A. Radiat. Phy. Chem., 1996, 48(1): 75-80

[8] 王敏(Wang M), 朱志远(Zhu Z Y), 杨睿媛(Yang R Y), 王文锋(Wang W F), 边绍伟(Bian S W), 沈忠群(Shen Z Q), 顾建忠(Gu J Z), 吴明红(Wu M H). 核技术(Nuclear Science and Technology), 2005, 28(1): 40-45

[9] Solpan D, Guven O. Radiat. Phy. Chem., 2002, 65(4/5): 549-558

[10] Solpan D, Guven O, Takacs E, Wojnarovits L, Dajka K. Radiat. Phy. Chem., 2003, 67(3/4): 531-534

[11] Zhang S J, Yu H Q, Li Q R. Chemosphere, 2005, 61(7): 1003-1011

[12] Chen Y P, Liu S Y, Yu H Q, Yin H, Li Q R. Chemosphere, 2008, 72(4): 532-536

[13] LaVerne J A, Tandon L, Knippel B C, Montoya V N. Radiat. Phy. Chem., 2005, 72(2/3): 143-147

[14] Wojnarovits L, Palfi T, Takacs E, Emmi S S. Radiat. Phy. Chem., 2005, 74(3/4): 239-246

[15] Ma H J, Wang M, Yang R Y, Wang W F, Zhao J, Shen Z Q, Yao S D. Chemosphere, 2007, 68(6): 1098-1104

[16] Rauf M A, Ashraf S S. J. Hazard. Mater., 2009, 166(1): 6-16

[17] Wang T Z, Waite T D, Charles K, Cooper W J. Water Res., 1994, 28(1): 237-241

[18] Lepine F L, Beaudoin J, Beaudet R. Environ. Appl. Ionzing Radiat., 1998, 467-476

[19] Taghipour F, Evans G J. Environ. Appl. Ionzing Radiat., 1998, 477-494

[20] 何仕均(He S J), 谢雷(XIe L), 王建龙(Wang J L), 李坤豪(Li S H), 龚文琪(Gong W Q). 清华大学学报(自然科学版) (Journal of Tsinghua University (Science and Technology)), 2008, 48(12): 2100-2102

[21] 胡俊(Hu J), 王建龙(Wang J L). 环境科学(Environmental Science), 2009, 10: 2936-2939

[22] 宋卫华(Song W H), 郑正(Zheng Z), 杭德生(Hang D S), 刘下国(Liu X G), 冯建(Feng J). 南京大学学报(自然科学) (Journal of Nanjing University (Science and Technology)), 2001, 37(6): 730-734

[23] Kimura A, Taguchi M, Kondoh T, Yang J F, Nagaishi R, Yoshida Y, Hirota K. Radiat. Phy. Chem., 2010, 79(11): 1159-1164

[24] Gonzalez-Juarez J C, Jimenez-Becerril J, Cejudo-Alvarez J. J. Mex. Chem. Soc., 2010, 54(3): 157-159

[25] Lacorte S, Viana P, Guillamon M, Tauler R, Vinhas T, Barcelo D. J. Environ. Monitor., 2001, 3(5): 475-482

[26] Schmelling D C, Gray K A, Kamat P V. Environ. Sci. Technol., 1998, 32(7): 971-974

[27] Lee B, Lee M. Environ. Sci. Technol., 2005, 39(23): 9278-9285

[28] 周涛(Zhou T), 郑正(Zheng Z), 孙权(Sun Q), 王红(Wang H), 利晓(Li X), 杨光俊(Yang G J). 环境科学技术(Environmental Science and Technology), 2003, 26(6): 15-17

[29] 边绍伟(Bian S W), 王敏(Wang M), 杨睿媛(Yang R Y), 王文锋(Wang W F). 辐射研究与辐射工艺学报(Journal of Radiation Research and Radiation Processing), 2005, 23(4): 211-215

[30] 边绍伟(Bian S W), 王敏(Wang M), 杨睿媛(Yang R Y), 王文锋(Wang W F), 沈忠群(Shen Z Q). 环境科学学报(Journal of Environmental Sciences), 2006, 26(1): 27-31

[31] Sanchez M, Wolfger H, Getoff N. Radiat. Phy. Chem., 2002, 65(6): 611-620

[32] Marin T W, Cline J A, Takahashi K, Bartels D M, Jonah C D. J. Phys. Chem. A, 2002, 106(51): 12270-12279

[33] Zhang S J, Jiang H, Li MJ, Yu H Q, Yin H, Li Q R. Environ. Sci. Technol., 2007, 41(6): 1977-1982

[34] Palfi T, Takacs E, Wojnarovits L. Water Res., 2007, 41(12): 2533-2540

[35] Yu S Q, Hu J, Wang J L. J. Hazard. Mater., 2010, 177(1/3): 1061-1067

[36] WHO. Environmental Health Criteria: Brominated Diphenyl Ethers. 1994: 162

[37] Singha A, Kremersa W, Smalleya P, Bennetta G S. Radiat. Phy. Chem., 1985, 25(1/3): 11-19

[38] Saway T, Shimokawa T, Shinozak Y B. Chem. Soc. Jpn., 1974, 47(8): 1889-1996

[39] Singh A, Kremers W, Smalley P, Bennett G S. Radiat. Phy. Chem., 1985, 25(1/3): 11-19

[40] Mincher B J, Meikrantz D H, Murphy R J, Gresham G L, Connolly M J. Int. J. Radiat. Applic. Instr. A., 1991, 42(11): 1061-1066

[41] Mincher B J, Arbon R E, Knighton W B, Meikrantz D H. Appl. Radiat. Isotopes, 1994, 45(8): 879-887

[42] AlSheikhly M, Silverman J, Neta P, Karam L. Environ. Sci. Technol., 1997, 31(9): 2473-2477

[43] Schmelling D C, Poster D L, Chaychian M, Neta P, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 1998, 32(2): 270-275

[44] Mincher B J, Brey R R, Rodriguez R G, Pristupa S, Ruhter A. Radiat. Phy. Chem., 2002, 65(4/5): 461-465

[45] Tang L A, Xu G, Wu W J, Shi W Y, Liu N, Bai Y L, Wu M H. Nucl. Sci. Tech., 2010, 21(2): 72-75

[46] Fox J E, Starcevic M, Kow K Y, Burow M E, McLachlan J A. Nature, 2001, 413(6852): 128-129

[47] Wu M H, Liu N, Xu G, Ma J, Tang L, Wang L, Fu H Y. Radiat. Phy. Chem., doi: 10.1016/j. radphyschem. 2010.10.008

[48] Kimura A, Taguchi M, Ohtani Y, Takigami M, Shimada Y, Kojima T, Hiratsuka H, Namba H. Radiat. Phy. Chem., 2006, 75(1): 61-69

[49] Mvula E, Schuchmann M N, von Sonntag C. J. Chem. Soc. Perk. T. 2, 2001, (3): 264-268

[50] Roder M, Wojn Da' rovits L, F ldi Da' K G. Radiat. Phys. Chem., 1990, 36: 175-173

[51] Kimura A, Taguchi M, Arai H, Hiratsuka H, Namba H, Kojima T. Radiat. Phy. Chem., 2004, 69(4): 295-301

[52] Kimura A, Taguchi M, Ohtani Y, Shimada Y, Hiratsuka H, Kojima T. Radiat. Phy. Chem., 2007, 76(4): 699-706

[53] Zhao C L, Hirota K, Taguchi M, Takigami M, Kojima T. Radiat. Phy. Chem., 2007, 76(1): 37-45

[54] Hitzfeld B C, Hger S J, Dietrich D R. Environ. Health Persp., 2000, 108 (Suppl. 1): 113-122

[55] Zhang J B, Zheng Z, Yang G J, Zhao Y F. Nucl. Instrum. Meth. A, 2007, 580(1): 687-689

[56] Song W H, Xu T L, Cooper W J, Dionysiou D D, De La Cruz A A, O'Shea K E. Environ. Sci. Technol., 2009, 43(5): 1487-1492

[57] Kawamura K, Shui VH. Radiat. Phy. Chem., 1984, 24(1): 117-127

[58] Persona J C, David O. Radiat. Phy. Chem., 1988, 31(1/3): 1-8

[59] Kikuchi R, Pelovski Y. Process Saf. Environ., 2009, 87(2): 135-143

[60] IAEA-TECDOC. Proceeding of a Technical meeting held in Sofia, Bulgaria, 2004, 1475

[61] Vitale S A, Hadidi K, Cohn D R, Bromberg L, Falkos P. Chemtech, 1996, 26(4): 58-63

[62] Penetrante B M, Hsiao M C, Bardsley J N, Merritt B T, Vogtlin G E, Wallman P H, Kuthi A, Burkhart C P, Bayless J R. Pure Appl. Chem., 1996, 68(5): 1083-1087

[63] Sun Y X, Hakoda T, Chmielewski A G, Hashimoto S, Zimek Z, Bulka S, Ostapczuk A, Nichipor H. Radiat. Phy. Chem., 2001, 62(4): 353-360

[64] Hakoda T, Zhang G, Hashimoto S. Radiat. Phy. Chem., 2001, 62(2/3): 243-252

[65] Han D H, Stuchinskaya T, Won Y S, Park W S, Lim J K. Radiat. Phy. Chem., 2003, 67(1): 51-60

[66] Hirota K, Hakoda T, Taguchi M, Takigami M, Kim H, Kojima T. Environ. Sci. Technol., 2003, 37(14): 3164-3170

[67] Fernandez-Martinez G, Lopez-Vilarino J M, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D, Abad E, Rivera J. Chemosphere, 2004, 57(1): 67-71

[68] Hakoda T, Matsumoto K, Mizuno A, Kojima T, Hirota K. Plasma Chem. Plasma P., 2008, 28(1): 25-37

[69] Hakoda T, Matsumoto K, Mizuno A, Hirota K. Appl. Catal. A-Gen., 2009, 357(2): 244-249

[70] Ostapczuk A, Hakoda T, Shimada A, Kojima T. Plasma Chem. Plasma P., 2008, 28(4): 483-494

[71] Son Y S, Kim K J, Kim J Y, Kim J C. Radiat. Phy. Chem., 2010, 79(12): 1270-1274

[72] Hakoda T, Shimada A, Kimura A, Taguchi M, Sugo Y, Arak K, Dally E B, Hirota K. Ind. Eng. Chem. Res., 2010, 49(12): 5517-5522

[73] 包伯荣(Bao B R), 吴明红(Wu M H), 罗文芸(Luo W Y), 周瑞敏(Zhou R M), 张仲燕(Zhang Z Y). 核技术(Nuclear Science and Technology), 1996, 12(19): 759-765

[74] Gautam S, Shah M R, Sabharwal S, Sharma A. Water Environ. Res., 2005, 77(5): 472-479

[75] Shani G, Segman-Magidovich S. J. Solid Waste Techn. Manage., 2009, 35(1): 17-25

[76] Burillo G, Clough R L, Czvikovszky T, Guven O, Le Moel A, Liu W W, Singh A, Yang J T, Zaharescu T. Radiat. Phy. Chem., 2002, 64(1): 41-51

[77] 覃柳莎(Tan L S), 赵素合(Zhao S H). 橡塑技术与装备(China Rubber/Plastics Technology and Equipment), 2007, 33(3): 22-26

[78] Getoff N. Radiat. Phys. Chem., 1991, 37(5): 673-680

[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[3] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[4] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[5] 范功端, 林茹晶, 苏昭越, 许仁星. 沸石咪唑酯骨架材料用于水中污染物的去除[J]. 化学进展, 2016, 28(12): 1753-1761.
[6] 童敏曼, 赵旭东, 解丽婷, 刘大欢*, 阳庆元, 仲崇立*. 金属-有机骨架材料用于废水处理[J]. 化学进展, 2012, (9): 1646-1655.
[7] 沈伟韧,赵文宽,贺飞,方佑龄. TiO2光催化反应及其在废水处理中的应用*[J]. 化学进展, 1998, 10(04): 349-.
阅读次数
全文


摘要

辐射技术在环境保护中的应用