English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1534-1546 前一篇   后一篇

• 放射化学专辑 •

同步辐射及相关核分析技术在纳米材料生物效应研究中的应用

曲颖1, 李玉锋2, 陈春英1,2,*   

  1. 1. 国家纳米科学中心 中国科学院纳米生物效应与安全重点实验室 北京 100190;
    2. 中国科学院高能物理研究所核分析技术重点实验室 北京 100049
  • 收稿日期:2011-01-01 修回日期:2011-04-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail:chenchy@nanoctr.cn E-mail:chenchy@nanoctr.cn

Synchrotron Radiation and Related Nuclear Analytical Techniques for the Study on Biological Effects of Nanomaterials

Qu Ying1, Li Yufeng2, Chen Chunying1,2,*   

  1. 1. CAS Key Laboratory for Biomdical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China;
    2. CAS Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
  • Received:2011-01-01 Revised:2011-04-01 Online:2011-07-24 Published:2012-03-15

伴随纳米技术的发展,纳米材料的生物效应研究成为热点,然而这一新兴的研究领域对传统的研究方法提出了挑战,其深入研究有赖于方法学的发展。同步辐射是具有高亮度、高准直、宽频谱等优异性质的光源,其在元素分析及物质原子或分子尺度的结构表征方面具有独特的优势。本文介绍了同步辐射及相关核分析技术,主要包括同步辐射X荧光分析、同步辐射X射线吸收光谱(扩展X射线吸收精细结构EXAFS,X射线吸收近边结构XANES)、同步辐射圆二色谱、电感耦合等离子体质谱、中子活化分析、同位素示踪技术等在纳米生物效应研究中的应用,结合本实验室以及国内外的研究工作详细阐述了基于同步辐射以及相关核分析方法应用于纳米材料表征及其在生物体内的定量、分布、结构分析等方面的最新进展。

With the rapid development of nanotechnology, studies on biological effects of nanomaterials have becoming hotspots. However, the fully understanding of fate and toxicological behavior of nanomaterials as a result of interactions with complex biosystem are highly dependent on the reliable analytical techniques. Synchrotron radiation is an advanced light source with notable quality such as high brightness, high level of polarization, high collimation, high brilliance, high intensity and tide tunability in energy/wavelength. It provides particular advantages in elemental mapping and structure characterization of nanomaterials. In this paper, the applications of synchrotron radiation and related nuclear analytical techniques in the studies on the toxicological or biological behaviors of nanomaterials in biological systems are critically reviewed, along with their advantages and limitations. Mentioned techniques include synchrotron radiation X ray fluorescence (SRXRF), X-ray absorption fine structure (XAFS, XANES and EXAFS), synchrotron radiation circular dichroism spectroscopy (SRCD), inductively coupled plasma mass spectrometry (ICP-MS), neutron activation analysis (NAA), and isotopic tracing. High throughput quantification of nanomaterials can be achieved by ICP-MS and NAA. The distribution mappings of nanomaterials can be performed by SRXRF and isotopic tracing. Structural characterization can be acquired by XAFS and SRCD. All together, these novel techniques will help to lead a better understanding of the biological effects of nanomaterials.

Contents
1 Introduction
2 Synchrotron radiation and related nuclear analytical techniques for the study on biological effects of nanomaterials
2.1 Size characterization of nanomaterials
2.2 Oxidation state and structural analysis of nanomaterials
2.3 In vivo quantification of nanomaterials
2.4 Biodistribution of nanomaterials
2.5 Oxidation state and structural analysis of nanomaterials in the body
3 Conclusions and Outlook

中图分类号: 

()


[1] Dowling A, Clift R, Grobert N, Hutton D, Oliver R, Oneill O, Pethica J, Pidgeon N, Porritt J, Ryan J. London: The Royal Society & The Royal Academy of Engineering Report, 2004

[2] Nel A, Xia T, Madler L, Li N. Science, 2006, 311: 622-627

[3] Zhao Y, Nalwa H. Nanotoxicology: interactions of nanomaterials with biological systems; American Scientific Publishers, 2007

[4] Chen C. Nuclear Analytical Techniques for Metallomics and Metalloproteomics; Royal Society of Chemistry, 2010. 344

[5] Monteiro-Riviere N, Tran C. Nanotoxicology: characterization, dosing and health effects; Informa healthcare, 2007

[6] 马礼敦(Ma L D), 杨福家(Yang F J). 同步辐射应用概论( Application of Synchrotron Radiation). 上海: 复旦大学出版社 ( Shanghai: Fudan University Publishing House), 2001

[7] 李浩虎(Li H H), 余笑寒(Yu X H), 何建华(He J H). 现代物理知识(Mordern Physics), 2010, 14-19

[8] 刘虎生(Liu H S), 邵宏翔(Shao H X). 电感耦合等离子体质谱技术与应用(Techniques and Applications of Inductively Coupled Plasma Mass Spectrometry). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2005

[9] 周瑛(Zhou Y), 叶丽(Ye L), 竹鑫平(Zhu X P). 化学进展(Progress in Chemistry), 2007, 19: 982-995

[10] Degueldre C, Favarger P Y, Wold S. Analytica Chimica Acta, 2006, 555: 263-268

[11] Schmidt B, Petersen J. H, Koch C B, Plackett D, Johansen N R, Katiyar V, Larsen E H. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2009, 26: 1619-1627

[12] Tiede K, Boxall A B A, Tiede D, Tear S P, David H, Lewis J. Journal of Analytical Atomic Spectrometry, 2009, 24: 964-972

[13] 王其武(Wang Q W), 刘文汉(Liu W H). X射线吸收精细结构及其应用(X-Ray Absorption Fine Structure and Application ), 北京: 科学出版社(Beijing: Science Press), 1994

[14] Behrens P. Characterization I, 2004, 4: 427-466

[15] Astruc D, Daniel M C, Ruiz J. Chemical Communications, 2004, 2637-2649

[16] Daniel M C, Aranzaes J R, Nlate S, Astruc D. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15: 107-119

[17] Daniel M C, Ruiz J, Nlate S, Blais J C, Astruc D. Journal of the American Chemical Society, 2003, 125: 2617-2628

[18] Rehr J J, Ankudinov A L. Coordination Chemistry Reviews, 2005, 249: 131-140

[19] Sharma N C, Sahi S V, Nath S, Parsons J G, Gardea-Torresde J L, Pal T. Environmental Science & Technology, 2007, 41: 5137-5142

[20] Matsuo S, Tsukamoto T, Kamigaki A, Okaue Y, Yokoyama T, Wakita H. X-Ray Spectrometry, 2003, 32: 158-160

[21] Su C H, Sheu H S, Lin C Y, Huang C C, Lo Y W, Pu Y C, Weng J C, Shieh D B, Chen J H, Yeh C S. Journal of the American Chemical Society, 2007, 129: 2139-2146

[22] Zhong J, Song L, Meng J, Gao B, Chu W S, Xu H Y, Luo Y, Guo J H, Marcelli A, Xie S S, Wu Z Y. Carbon, 2009, 47: 967-973

[23] Prange A, Modrow H. Reviews in Environmental Science and Biotechnology, 2002, 1: 259-276

[24] Rajh T, Nedeljkovic J M, Chen L X, Poluektov O, Thurnauer M C. The Journal of Physical Chemistry B, 1999, 103, 3515-3519

[25] Meneses C T, Flores W H, Sasaki J M. Chemistry of Materials, 2007, 19: 1024-1027

[26] Adora S, Soldo Olivier Y, Faure R., Durand R, Dartyge E, Baudelet F. The Journal of Physical Chemistry B, 2001, 105: 10489-10495

[27] Hwang B J, Sarma L S, Chen J M, Chen C H, Shih S C, Wang G R, Liu D G, Lee J F, Tang M T. Journal of the American Chemical Society, 2005, 127: 11140-11145

[28] Kocharova N, Leiro J, Lukkari J, Heinonen M, Skala T, Sutara F, Skoda M, Vondracek M. Langmuir, 2008, 24: 3235-3243

[29] Meng H, Chen Z, Xing G M, Yuan H, Chen C Y, Zhao F, Zhang C C, Zhao Y L. Toxicology Letters, 2007, 175: 102-110

[30] Liu Y, Gao Y X, Zhang L L, Wang T C, Wang J X, Jiao F, Li W, Li Y F, Li B, Chai Z F, Wu G, Chen C Y. J. Nanosci. Nanotechnol., 2009, 9: 6335-6343

[31] 中国科学院高能物理研究所中子活化分析实验室; 1992-4-1 ed, 北京: 原子能出版社(Beijing: Atomic Energy Press), 1992

[32] Ge C, Lao F, Li W, Li Y, Chen C, Qiu Y, Mao X, Li B, Chai Z, Zhao Y. Analytical Chemistry, 2008, 80: 9426-9434

[33] Wang B, Wang Y, Feng W Y, Zhu M T, Wang M, Ouyang H, Wang H J, Li M, Zhao Y L, Chai Z F. Chem. Anal., 2008, 53: 927-942

[34] James W D, Hirsch L R, West J L, O'Neal P D, Payne J D. Journal of Radioanalytical and Nuclear Chemistry, 2007, 271: 455

[35] Oughton D H, Hertel-Aas T, Pellicer E, Mendoza E, Joner E J. Environmental Toxicology and Chemistry, 2008, 27: 1883-1887

[36] Wang J X, Zhou G Q, Chen C Y, Yu H W, Wang T C, Ma Y M, Jia G, Gao Y X, Li B, Sun J, Li Y F, Jiao F, Zhao Y L, Chai Z F. Toxicology Letters, 2007, 168: 176-185

[37] Wang J X, Liu Y, Jiao F, Lao F, Li W, Gu Y Q, Li Y F, Ge C C, Zhou G Q, Li B, Zhao Y L, Chai Z F, Chen C Y. Toxicology, 2008, 254: 82-90

[38] Wang J X, Chen C Y, Liu Y, Jiao F, Li W, Lao F, Li Y F, Li B, Ge C C, Zhou G Q, Gao Y X, Zhao Y L, Chai Z F. Toxicology Letters, 2008, 183: 72-80

[39] Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, Chai Z, Wang H, Wang J. Journal of Nanoparticle Research, 2008, 10: 263-276

[40] Zhu M T, Feng W Y, Wang Y, Wang B, Wang M, Ouyang H, Zhao Y L, Chai Z F. Toxicological Sciences, 2009, 107, 342-351

[41] Wang B, Feng W Y, Wang M, Shi J W, Zhang F, Ouyang H, Zhao Y L, Chai Z F, Huang Y Y, Xie Y N, Wang H F, Wang J. Biol. Trace Elem. Res., 2007, 118: 233-243

[42] Peng X, Wang Y, Huang D H, Mao H, Wang Y A, Chen Z G, Nie S, Shin D M. Proceedings of the American Association for Cancer Research Annual Meeting, 2009, 50: 1296

[43] Barath ManiKanth S, Kalishwaralal K, Sriram M, Pandian S R K, Youn H S, Eom S, Gurunathan S Journal of Nanobiotechnology, 2010, 8 ( 16): 1477-3115

[44] De Jong W H, Hagens W I, Krystek P, Burger M C, Sips A, Geertsma R E. Biomaterials, 2008, 29: 1912-1919

[45] Chen Z, Chen H, Meng H, Xing G M, Gao X Y, Sun B Y, Shi X L, Yuan H, Zhang C C, Liu R, Zhao F, Zhao Y L, Fang X H. Toxicology and Applied Pharmacology, 2008, 230: 364-371

[46] Yang R H, Chang L W, Wu J P, Tsai M H, Wang H J, Kuo Y C, Yeh T K, Yang C S, Lin P. Environmental Health Perspectives, 2007, 115: 1339-1343

[47] Wang J X, Chen C Y, Li B, Yu H W, Zhao Y L, Sun J, Li Y F, Xing G M, Yuan H, Tang J, Chen Z, Meng H, Gao Y X, Ye C, Chai Z F, Zhu C F, Ma B C, Fang X H, Wan L J. Biochemical Pharmacology, 2006, 71: 872-881

[48] Zhou G Q, Li Y F, Liu Y, Ge C C, Li W, Sun B Y, Li B, Gao Y X, Chen C Y. J. Nanosci. Nanotechnol., 2010, 10: 8597-8602

[49] Chen C Y, Xing G M, Wang J X, Zhao Y L, Li B, Tang J, Jia G, Wang T C, Sun J, Xing L, Yuan H, Gao Y X, Meng H, Chen Z, Zhao F, Chai Z F, Fang X H. Nano letters, 2005, 5: 2050-2057

[50] Zhang Z, Zhao Y, Chai Z. Chinese Science Bulletin, 2009, 54: 173-182

[51] 诸颖(Zhu Y), 冉铁成(Ran T C), 李睛暖(Li Q N), 徐晶莹(Xu J Y), 李文新(Li W X). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2010, 32: 1-7

[52] Gulson B, Wong H. Environmental Health Perspectives, 2006, 114: 1486-1488

[53] Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y. Carbon, 2007, 45: 1419-1424

[54] Wang J, Deng X Y, Yang S T, Wang H F, Zhao Y L, Liu Y F. Nanotoxicology, 2008, 2: 28-32

[55] Yang S T, Guo W, Lin Y, Deng X Y, Wang H F, Sun H F, Liu Y F, Wang X, Wang W, Chen M, Huang Y P, Sun Y P. J. Phys. Chem. C, 2007, 111: 17761-17764

[56] Yang S T, Wang X, Jia G, Gu Y Q, Wang T C, Nie H Y, Ge C C, Wang H F, Liu Y F. Toxicology Letters, 2008, 181: 182-189

[57] Zhu Y, Li W X, Li Q N, Li Y G, Li Y F, Zhang X Y, Huang Q. Carbon, 2009, 47: 1351-1358

[58] Cagle D W, Kennel S J, Mirzadeh S, Alford J M, Wilson L J. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 5182-5187

[59] Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K, Nakahara H, Enomoto S, Ambe F. Chemistry & Biology, 1995, 2: 385-389

[60] Wang H F, Wang J, Deng X Y, Sun H F, Shi Z J, Gu Z N, Liu Y F, Zhao Y L. J. Nanosci. Nanotechnol., 2004, 4: 1019-1024

[61] Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 3357-3362

[62] Tabata Y, Murakami Y, Ikada Y. Japanese Journal of Cancer Research, 1997, 88: 1108-1116

[63] Liu Z, Cai W B, He L N, Nakayama N, Chen K, Sun X M, Chen X Y, Dai H J. Nat. Nanotechnol., 2007, 2: 47-52

[64] West M, Ellis A T, Kregsamer P, Potts P J, Streli C, Vanhoof C, Wobrauschek P. Journal of Analytical Atomic Spectrometry, 2007, 22: 1304

[65] 梁钰(Liang Y). X 射线荧光光谱分析基础, 北京: 科学出版社(Beijing: Science Press), 2007

[66] Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T, Nature, 2005, 435: 1210-1213

[67] Vincze L, Vekemans B, Brenker F, Falkenberg G, Rickers K, Somogyi A, Kersten M, Adams F. Anal. Chem, 2004, 76: 6786-6791

[68] Fahrni C. J. Current Opinion in Chemical Biology, 2007, 11: 121-127

[69] Bussy C, Cambedouzou J, Lanone S, Leccia E, Heresanu V, Pinault M, Mayne-L'Hermite M, Brun N, Mory C, Cotte M. Nano letters, 2008, 8: 2659-2663

[70] Gao Y, Liu N, Chen C, Luo Y, Li Y, Zhang Z, Zhao Y, Zhao B, Iida A, Chai Z. Journal of Analytical Atomic Spectrometry, 2008, 23: 1121-1124

[71] Jackson B, Pace H, Lanzirotti A, Smith R, Ranville. J. Analytical and Bioanalytical Chemistry, 2009, 394: 911-917

[72] Auffan M, Achouak W, Rose J, Roncato M A, Chanéac C, Waite D T, Masion A, Woicik J C, Wiesner M R, Bottero J Y. Environmental Science & Technology, 2008, 42: 6730-6735

[73] Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A. M. Environmental Science & Technology, 2006, 40: 6151-6156

[74] Wang L, Li Y F, Zhou L, Liu Y, Meng L, Zhang K, Wu X, Zhang L, Li B, Chen C. Analytical and Bioanalytical Chemistry, 2010, 396: 1105-1114

[75] Wallace B A, Janes R W. Biochemical Society Transactions, 2003, 31: 631-633

[76] Kelly S M, Jess T J, Price N. C. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005, 1751: 119-139

[77] Gao X, Xing G, Yang Y, Sh X, Liu R, Chu W, Jing L, Zhao F, Ye C, Yuan H, Fang X, Wang C, Zhao Y. Journal of the American Chemical Society, 2008, 130: 9190-9191

[1] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[2] 黄辉, 陈俊, 卢会茹, 周梦雪, 胡毅, 柴之芳. 帕金森病中的关键金属元素[J]. 化学进展, 2018, 30(10): 1592-1600.
[3] 凌盛杰, 邵正中, 陈新. 同步辐射红外光谱成像技术对细胞的研究[J]. 化学进展, 2014, 26(01): 178-192.
[4] 田宇, 朱才镇, 龚静华, 马敬红, 杨曙光, 徐坚. 纤维结构形态的原位同步辐射X射线散射及衍射研究[J]. 化学进展, 2013, 25(10): 1751-1762.
[5] 凌盛杰, 黄郁芳*, 黄蕾, 邵正中, 陈新*. 同步辐射红外显微光谱学和成像技术在分析化学中的应用[J]. 化学进展, 2013, 25(05): 821-831.
[6] 储根柏, 陈军, 刘付轶*, 盛六四* . 气相自由基反应动力学的光电离质谱研究[J]. 化学进展, 2012, 24(11): 2097-2105.
[7] 周莹*, 林元华, Greta R. Patzke. 基于同步辐射光源研究水热合成纳米氧化物的生长机理[J]. 化学进展, 2012, 24(08): 1583-1591.
[8] 彭晓敏, 张金超, 高愈希, 柴之芳. 金属蛋白的提取分离技术[J]. 化学进展, 2012, 24(05): 834-843.
[9] 张智勇, 赵宇亮, 柴之芳. 纳米毒理学研究中的放射分析方法[J]. 化学进展, 2011, 23(7): 1527-1533.
[10] 刘勇 周永丰 颜德岳. 同步辐射在分子自组装研究中的应用[J]. 化学进展, 2010, 22(06): 1177-1184.
[11] 严佳萍,邵正中,陈新. 同步辐射红外光谱技术在生物医用领域的应用[J]. 化学进展, 2008, 20(11): 1768-1778.
[12] 晏晓敏,石宝友,王东升,汤鸿霄. 纳米富勒烯(nC60)的生态毒性效应*[J]. 化学进展, 2008, 20(0203): 422-428.
[13] 伍灼耀,盛六四,俞书勤. 高分辨脉冲场致电离光电子谱[J]. 化学进展, 1999, 11(02): 153-.