
纳米毒理学研究中的放射分析方法
Radioanalytical Methods in Nanotoxicology Studies
随着纳米技术及其应用的迅速发展,纳米材料对生命体和生态环境的影响引起了社会公众、纳米产品生产厂家、科研工作者和各国政府的密切关注。纳米毒理学已成为纳米技术和毒理学的重要分支。纳米毒理学研究依赖于多种分析方法,用于纳米材料物理化学特性的表征及检测生命体中的纳米材料。放射分析方法由于其高灵敏度、高准确度、原位和体内分析能力,在纳米毒理学研究中能够发挥重要作用。本文综述了放射分析方法在纳米毒理学研究中应用的最新进展,重点介绍了针对不同纳米材料的放射性标记技术。
With the rapid development of nanotechnology and its applications, the potential interactions of nanomaterials with living systems and the environment have attracted increasing attention from the public, as well as from manufacturers of nanomaterial-based products, academic researchers and policymakers. Nanotoxicology is emerging as an important subdiscipline of nanotechnology as well as toxicology. Nanotoxicology studies rely on many analytical methods for the characterization of nanomaterials and detection of nanomaterials in living systems. In this case, radioanalytical methods can play an important role due to their intrinsic merits such as high sensitivity, good accuracy, ability to distinguish the endogenous or exogenous sources of materials, and ability of in situ and in vivo analysis. This article reviews recent progress of applications of radioanalytical methods in nanotoxicology studies, and the emphasis is radiolabeling methods of nanomaterials.
Contents
1 Introduction
2 Chemical impurity analysis of carbon nanotubes using neutron activation analysis
3 Radiolabelling of nanomaterials for in vivo radiotracer studies
3.1 Radiolabeling of carbon nanomaterials
3.2 Radiolabeling of metallic and metal oxide nanomaterials
3.3 Radiolabeling of nanomedicines and other nanoparticles
4 Conclusions and outlook
放射分析 / 纳米毒理学 / 纳米材料 {{custom_keyword}} /
radioanalytical methods / nanotoxicology / nanomaterials {{custom_keyword}} /
[1] 赵宇亮(Zhao Y L), 柴之芳(Chai Z F). 纳米毒理学(Nanotoxicology). 北京: 科学出版社(Beijing: Sciennce Press), 2010. 1-10
[2] 张智勇(Zhang Z Y), 柴之芳(Chai Z F). 核化学与放射化学(J. Nucl. Radiochem. ), 2009, 31(S): 53-57
[3] Liu X, Guo L, Morris D, Kane A, Hurt R H. Carbon, 2008, 46: 489-500
[4] Braun T, Rausch H, Bíró L P, Konya Z, Kiricsi I. J. Radioanal. Nucl. Chem., 2004, 262: 31-34
[5] Decker J E, Walker A R H, Bosnick K, Clifford C A, Dai L, Fagan J, Hooker S, Jakubek Z J, Kingston C, Makar J, Mansfield E, Postek M T, Simard B, Sturgeon R, Wise S, Vladar A E, Yang L, Zeisler R. Metrologia, 2009, 46: 682-692
[6] Zeisler R, Paul R L, Oflaz S R, Yu LL, Mann J L, Kelly W R, Lang B E, Leigh S D, Fagan J. Anal. Bioanal. Chem., 2011, 399: 509-517
[7] Ge C C, Lao F, Li W, Li Y F, Chen, C C, Qiu Y, Mao X Y, Li B, Chai Z F, Zhao Y L. Anal. Chem., 2008, 80: 9426-9434
[8] Mortari S R, Cocco C R, Bartz F R, Dresssler V L, Flores E M. Anal. Chem., 2010, 82(10): 4298-4303.
[9] Yang K X, Kitto M E, Orsini J P, Swami K, Beach S E. J. Anal. At. Spectrom., 2010, 25: 1290-1297
[10] Zhang Z Y, Zhao Y L, Chai Z F. Chinese Sci. Bull., 2009, 54: 173-182
[11] Scrivens W A, Tour J M, Creek K E, Pirisi L. J. Am. Chem. Soc., 1994, 116: 4517-4518
[12] Chen J K, Shih M H, Peir J J, Liu C H, Chou F I, Lai W H, Chang L W, Lin P P, Wang M Y, Yang M H, Yang C S. Analyst, 2010, 135: 1742-1746
[13] Zhang Z Y, Wang X Y, Wu Y H, Liu Y F. J. Label. Compds. Radiopharm., 2000, 43 (1): 55-64
[14] Braun T, Rausch H. Carbon, 1998, 36: 1708-1709
[15] Abbas K, Cydzik I, Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W. J. Nanopart. Res., 2010, 12: 2435-2443
[16] Deng X, Jia G, Wang H F, Sun H, Wang X, Yang S, Wang T, Liu Y. Carbon, 2007, 45: 1419-1424
[17] Li Q N, Xiu Y, Zhang X D, et al. Chinese Sci. Bull., 2001, 46 (11): 1615-1618
[18] Petersen E J, Huang Q G, Weber Jr W J. Environ. Sci. Technol., 2008, 42 (8): 3090-3095
[19] Ferguson P L, Chandler G T, Templeton R C, DeMarco A, Scrivens W A, Englehart B A. Environ. Sci. Technol., 2008, 42(10): 3879-3885
[20] Georgin D, Czarny B, Botquin M, Mayne-L'hermite M, Pinault M, Bouchet-Fabre B, Carriere M, Poncy JL, Chau Q, Maximilien R, Dive V, Taran F. J. Am. Chem. Soc., 2009, 131(41): 14658-9.
[21] Masumoto K, Ohtsuki T, Sueki K, Kikuchi K, Mitsugashira T. J. Radioanal. Nucl. Chem., 1999, 239(1): 201-206
[22] Ohtsuki T, Masumoto K, Shikano K, Sueki K, Tanaka T, Komatsu K. Biol. Trace Elem. Res., 1999, 71/72: 489-498
[23] Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhao Y. J. Nanosci. Nanotechnol., 2004, 4(8): 1-6
[24] Li Y G, Zhang X D, Li Q N, Li W X. J. Radioanal. Nucl. Chem., 2001, 250: 363-364
[25] Ji Z Q, Sun H F, Wang H F, Xie Q Y, Liu Y F, Wang Z. J. Nanopart. Res., 2005, 8: 53-63
[26] Hong S Y, Tobias G, Al-Jamal K T, Ballesteros B, Ali-Boucetta H, Lozano-Perez S, Nellist P D, Sim R B, Finucane C, Mather S J, Green M L, Kostarelos K, Davis B G. Nat. Mater., 2010, 9(6): 485-490
[27] Ran T C, Liu R L, Yin J J, Zhu J H, Li W X, Li Q N. J. Radioanal. Nucl. Chem., 2006, 268(3): 599-603
[28] Nikoli Dc' N, Vranjes-Ethuri Dc' S, Jankovi Dc' D, Ethoki Dc' D, Mirkovi Dc' M, Bibi Dc' N, Trajkovi Dc' V. Nanotechnology. 2009, 20(38): art. no. 385102
[29] Li Q N, Xiu Y, Zhang X D, Liu R L, Du Q Q, Shun X G, Chen S L, Li W X. Nucl. Med. Biol., 2002, 29(6): 707-720
[30] Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, Huang Q, Zhu Z. Toxicol. Lett., 2010, 198(2): 237-243
[31] 李宇国(Li Y G), 李晴暖(Li Q N), 张勇平(Zhang Y P), 黄旋(Huang X), 李文新(Li W X). 核化学与放射化学(J. Nucl. Radiochem. ), 2002, 24: 161-163
[32] Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Proc. Natl. Acad. Sci. USA, 2006, 103(9): 3357-3362
[33] Liu Z, Cai W B, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. . Nat. Nanotechnol., 2007, 2: 47-52
[34] Kikuchi K, Kobayashi K, Sueki K, Suzuki S, Nakahara H, Achiba Y, Tomura K, Katada M. J. Am. Chem. Soc., 1994, 116: 9775-9776
[35] Kobayashi K, Kuwano M, Sueki K, Kikuchi K, Achiba Y, Nakahara H, Kananishi N, Watanabe M, Tomura K. J. Radioanal. Nucl. Chem., 1995, 192: 81-89
[36] Cagle D W, Thrash T P, Abford M, Chibante L P F, Ehrhardt G J, Wilson L J. J. Am. Chem. Soc., 1996, 118: 8043-8047
[37] Cagle D W, Kennel S J, Mirzadeh S, Alford J M, Wilson L J. Proc. Natl. Acad. Sci. USA, 1999, 96: 5182-5187
[38] Braun T, Rausch H. Carbon, 1998, 36: 1708-1709
[39] Saha S K, Chowdhury D P, Das S K, Guin R. Nucl. Instr. Meth. B, 2006, 243: 277-281
[40] Shultz M D, Duchamp J C, Wilson J D, Shu C Y, Ge J, Zhang J, Gibson H W, Fillmore H L, Hirsch J I, Dorn H C, Fatouros P P. J. Am. Chem. Soc., 2010, 132(14): 4980-4981
[41] Kreyling W G, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdrster G, Ziesenis A. J. Toxicol. Environ. Health A, 2002, 65 (20): 1513-1530
[42] Lipka J, Semmler-Behnke M, Sperling R A, Wenk A, Takenaka S, Schleh C, Kissel T, Parak W J, Kreyling W G. Biomaterials, 2010, 31(25): 6574-6581
[43] Roy K, Lahiri S. Green Chem., 2006, 8: 1063-1066
[44] 范我(Fan W), 杨凯(Yang K), 钱建华(Qian J H), 朱然(Zhu R), 朱本兴(Zhu B X). 同位素(J. Isotopes), 2001, 14(1): 31-35
[45] 尹其华(Yin Q H), 刘璐(Liu L), 顾宁(Gu N), 黄鹰(Huang Y), 刘岚(Liu L), 宋进华(Song J H), 崔云(Cui Y). 医学研究生学报(J. Med. Postgrad. ), 2005, 18(4): 312-317
[46] Fu C M, Wang Y F, Chao Y C, Hung S H, Yang M D. IEEE T. Magn., 2004, 40(4): 3003-3005
[47] Oughton D H, Hertel-Aas T, Pellicer E M, Mendoza E, Joner E J. Environ. Toxicol. Chem., 2008, 27(9): 1883-1887
[48] Lu K, Zhang Z Y, He X, Ma Y H, Zhou K B, Zhang H F, Bai W, Ding Y Y, Wu Z Q, Zhao Y L, Chai Z F. J. Nanosci. Nanotechnol., 2010, 10: 8658-8662
[49] He X, Zhang H F, Ma Y H, Bai W, Zhang Z Y, Lu K, Ding Y Y, Zhao Y L, Chai Z F. Nanotechnology, 2010, 21(28): art. no. 285103
[50] Matson J B, Grubbs R H. J. Am. Chem. Soc., 2008, 130: 6731-6733
[51] Tsotsalas M M, Kopka K, Luppi G, Wagner S, Law M P, Schfers M, De Cola L. ACS Nano, 2010, 4(1): 342-348
[52] Reilly R M. J. Nucl. Med., 2007, 48(7): 1039-1042
[53] Shokeen M, Fetting N M, Rossin. Q. J. Nucl. Med. Mol. Imaging, 2008, 52: 267-277
[54] Muthu M S, Wilson B. Nanomedicine, 2010, 5(2): 169-171
[55] 诸颖(Zhu Y), 冉铁成(Ran T C), 李睛暖(Li Q N), 徐晶莹(Xu J Y), 李文新(Li W X). 核化学与放射化学(J. Nucl. Radiochem. ), 2009, 32(1): 1-7
国家重点基础研究发展计划(973)项目(2011CB933400)和国家自然科学基金项目(No.10875136,10905062,11005118) 资助
/
〈 |
|
〉 |