English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1527-1533 前一篇   后一篇

• 放射化学专辑 •

纳米毒理学研究中的放射分析方法

张智勇*, 赵宇亮, 柴之芳   

  1. 中国科学院高能物理研究所核分析技术重点实验室 纳米生物效应与安全性重点实验室 北京 100049
  • 收稿日期:2010-12-01 修回日期:2011-03-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail: zhangzhy@ihep.ac.cn E-mail:zhangzhy@ihep.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(2011CB933400)和国家自然科学基金项目(No.10875136,10905062,11005118) 资助

Radioanalytical Methods in Nanotoxicology Studies

Zhang Zhiyong*, Zhao Yuliang, Chai Zhifang   

  1. Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100049, China
  • Received:2010-12-01 Revised:2011-03-01 Online:2011-07-24 Published:2012-03-15

随着纳米技术及其应用的迅速发展,纳米材料对生命体和生态环境的影响引起了社会公众、纳米产品生产厂家、科研工作者和各国政府的密切关注。纳米毒理学已成为纳米技术和毒理学的重要分支。纳米毒理学研究依赖于多种分析方法,用于纳米材料物理化学特性的表征及检测生命体中的纳米材料。放射分析方法由于其高灵敏度、高准确度、原位和体内分析能力,在纳米毒理学研究中能够发挥重要作用。本文综述了放射分析方法在纳米毒理学研究中应用的最新进展,重点介绍了针对不同纳米材料的放射性标记技术。

With the rapid development of nanotechnology and its applications, the potential interactions of nanomaterials with living systems and the environment have attracted increasing attention from the public, as well as from manufacturers of nanomaterial-based products, academic researchers and policymakers. Nanotoxicology is emerging as an important subdiscipline of nanotechnology as well as toxicology. Nanotoxicology studies rely on many analytical methods for the characterization of nanomaterials and detection of nanomaterials in living systems. In this case, radioanalytical methods can play an important role due to their intrinsic merits such as high sensitivity, good accuracy, ability to distinguish the endogenous or exogenous sources of materials, and ability of in situ and in vivo analysis. This article reviews recent progress of applications of radioanalytical methods in nanotoxicology studies, and the emphasis is radiolabeling methods of nanomaterials.

Contents
1 Introduction
2 Chemical impurity analysis of carbon nanotubes using neutron activation analysis
3 Radiolabelling of nanomaterials for in vivo radiotracer studies
3.1 Radiolabeling of carbon nanomaterials
3.2 Radiolabeling of metallic and metal oxide nanomaterials
3.3 Radiolabeling of nanomedicines and other nanoparticles
4 Conclusions and outlook

中图分类号: 

()


[1] 赵宇亮(Zhao Y L), 柴之芳(Chai Z F). 纳米毒理学(Nanotoxicology). 北京: 科学出版社(Beijing: Sciennce Press), 2010. 1-10

[2] 张智勇(Zhang Z Y), 柴之芳(Chai Z F). 核化学与放射化学(J. Nucl. Radiochem. ), 2009, 31(S): 53-57

[3] Liu X, Guo L, Morris D, Kane A, Hurt R H. Carbon, 2008, 46: 489-500

[4] Braun T, Rausch H, Bíró L P, Konya Z, Kiricsi I. J. Radioanal. Nucl. Chem., 2004, 262: 31-34

[5] Decker J E, Walker A R H, Bosnick K, Clifford C A, Dai L, Fagan J, Hooker S, Jakubek Z J, Kingston C, Makar J, Mansfield E, Postek M T, Simard B, Sturgeon R, Wise S, Vladar A E, Yang L, Zeisler R. Metrologia, 2009, 46: 682-692

[6] Zeisler R, Paul R L, Oflaz S R, Yu LL, Mann J L, Kelly W R, Lang B E, Leigh S D, Fagan J. Anal. Bioanal. Chem., 2011, 399: 509-517

[7] Ge C C, Lao F, Li W, Li Y F, Chen, C C, Qiu Y, Mao X Y, Li B, Chai Z F, Zhao Y L. Anal. Chem., 2008, 80: 9426-9434

[8] Mortari S R, Cocco C R, Bartz F R, Dresssler V L, Flores E M. Anal. Chem., 2010, 82(10): 4298-4303.

[9] Yang K X, Kitto M E, Orsini J P, Swami K, Beach S E. J. Anal. At. Spectrom., 2010, 25: 1290-1297

[10] Zhang Z Y, Zhao Y L, Chai Z F. Chinese Sci. Bull., 2009, 54: 173-182

[11] Scrivens W A, Tour J M, Creek K E, Pirisi L. J. Am. Chem. Soc., 1994, 116: 4517-4518

[12] Chen J K, Shih M H, Peir J J, Liu C H, Chou F I, Lai W H, Chang L W, Lin P P, Wang M Y, Yang M H, Yang C S. Analyst, 2010, 135: 1742-1746

[13] Zhang Z Y, Wang X Y, Wu Y H, Liu Y F. J. Label. Compds. Radiopharm., 2000, 43 (1): 55-64

[14] Braun T, Rausch H. Carbon, 1998, 36: 1708-1709

[15] Abbas K, Cydzik I, Torchio R, Farina M, Forti E, Gibson N, Holzwarth U, Simonelli F, Kreyling W. J. Nanopart. Res., 2010, 12: 2435-2443

[16] Deng X, Jia G, Wang H F, Sun H, Wang X, Yang S, Wang T, Liu Y. Carbon, 2007, 45: 1419-1424

[17] Li Q N, Xiu Y, Zhang X D, et al. Chinese Sci. Bull., 2001, 46 (11): 1615-1618

[18] Petersen E J, Huang Q G, Weber Jr W J. Environ. Sci. Technol., 2008, 42 (8): 3090-3095

[19] Ferguson P L, Chandler G T, Templeton R C, DeMarco A, Scrivens W A, Englehart B A. Environ. Sci. Technol., 2008, 42(10): 3879-3885

[20] Georgin D, Czarny B, Botquin M, Mayne-L'hermite M, Pinault M, Bouchet-Fabre B, Carriere M, Poncy JL, Chau Q, Maximilien R, Dive V, Taran F. J. Am. Chem. Soc., 2009, 131(41): 14658-9.

[21] Masumoto K, Ohtsuki T, Sueki K, Kikuchi K, Mitsugashira T. J. Radioanal. Nucl. Chem., 1999, 239(1): 201-206

[22] Ohtsuki T, Masumoto K, Shikano K, Sueki K, Tanaka T, Komatsu K. Biol. Trace Elem. Res., 1999, 71/72: 489-498

[23] Wang H, Wang J, Deng X, Sun H, Shi Z, Gu Z, Liu Y, Zhao Y. J. Nanosci. Nanotechnol., 2004, 4(8): 1-6

[24] Li Y G, Zhang X D, Li Q N, Li W X. J. Radioanal. Nucl. Chem., 2001, 250: 363-364

[25] Ji Z Q, Sun H F, Wang H F, Xie Q Y, Liu Y F, Wang Z. J. Nanopart. Res., 2005, 8: 53-63

[26] Hong S Y, Tobias G, Al-Jamal K T, Ballesteros B, Ali-Boucetta H, Lozano-Perez S, Nellist P D, Sim R B, Finucane C, Mather S J, Green M L, Kostarelos K, Davis B G. Nat. Mater., 2010, 9(6): 485-490

[27] Ran T C, Liu R L, Yin J J, Zhu J H, Li W X, Li Q N. J. Radioanal. Nucl. Chem., 2006, 268(3): 599-603

[28] Nikoli Dc' N, Vranjes-Ethuri Dc' S, Jankovi Dc' D, Ethoki Dc' D, Mirkovi Dc' M, Bibi Dc' N, Trajkovi Dc' V. Nanotechnology. 2009, 20(38): art. no. 385102

[29] Li Q N, Xiu Y, Zhang X D, Liu R L, Du Q Q, Shun X G, Chen S L, Li W X. Nucl. Med. Biol., 2002, 29(6): 707-720

[30] Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, Huang Q, Zhu Z. Toxicol. Lett., 2010, 198(2): 237-243

[31] 李宇国(Li Y G), 李晴暖(Li Q N), 张勇平(Zhang Y P), 黄旋(Huang X), 李文新(Li W X). 核化学与放射化学(J. Nucl. Radiochem. ), 2002, 24: 161-163

[32] Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Proc. Natl. Acad. Sci. USA, 2006, 103(9): 3357-3362

[33] Liu Z, Cai W B, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H. . Nat. Nanotechnol., 2007, 2: 47-52

[34] Kikuchi K, Kobayashi K, Sueki K, Suzuki S, Nakahara H, Achiba Y, Tomura K, Katada M. J. Am. Chem. Soc., 1994, 116: 9775-9776

[35] Kobayashi K, Kuwano M, Sueki K, Kikuchi K, Achiba Y, Nakahara H, Kananishi N, Watanabe M, Tomura K. J. Radioanal. Nucl. Chem., 1995, 192: 81-89

[36] Cagle D W, Thrash T P, Abford M, Chibante L P F, Ehrhardt G J, Wilson L J. J. Am. Chem. Soc., 1996, 118: 8043-8047

[37] Cagle D W, Kennel S J, Mirzadeh S, Alford J M, Wilson L J. Proc. Natl. Acad. Sci. USA, 1999, 96: 5182-5187

[38] Braun T, Rausch H. Carbon, 1998, 36: 1708-1709

[39] Saha S K, Chowdhury D P, Das S K, Guin R. Nucl. Instr. Meth. B, 2006, 243: 277-281

[40] Shultz M D, Duchamp J C, Wilson J D, Shu C Y, Ge J, Zhang J, Gibson H W, Fillmore H L, Hirsch J I, Dorn H C, Fatouros P P. J. Am. Chem. Soc., 2010, 132(14): 4980-4981

[41] Kreyling W G, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdrster G, Ziesenis A. J. Toxicol. Environ. Health A, 2002, 65 (20): 1513-1530

[42] Lipka J, Semmler-Behnke M, Sperling R A, Wenk A, Takenaka S, Schleh C, Kissel T, Parak W J, Kreyling W G. Biomaterials, 2010, 31(25): 6574-6581

[43] Roy K, Lahiri S. Green Chem., 2006, 8: 1063-1066

[44] 范我(Fan W), 杨凯(Yang K), 钱建华(Qian J H), 朱然(Zhu R), 朱本兴(Zhu B X). 同位素(J. Isotopes), 2001, 14(1): 31-35

[45] 尹其华(Yin Q H), 刘璐(Liu L), 顾宁(Gu N), 黄鹰(Huang Y), 刘岚(Liu L), 宋进华(Song J H), 崔云(Cui Y). 医学研究生学报(J. Med. Postgrad. ), 2005, 18(4): 312-317

[46] Fu C M, Wang Y F, Chao Y C, Hung S H, Yang M D. IEEE T. Magn., 2004, 40(4): 3003-3005

[47] Oughton D H, Hertel-Aas T, Pellicer E M, Mendoza E, Joner E J. Environ. Toxicol. Chem., 2008, 27(9): 1883-1887

[48] Lu K, Zhang Z Y, He X, Ma Y H, Zhou K B, Zhang H F, Bai W, Ding Y Y, Wu Z Q, Zhao Y L, Chai Z F. J. Nanosci. Nanotechnol., 2010, 10: 8658-8662

[49] He X, Zhang H F, Ma Y H, Bai W, Zhang Z Y, Lu K, Ding Y Y, Zhao Y L, Chai Z F. Nanotechnology, 2010, 21(28): art. no. 285103

[50] Matson J B, Grubbs R H. J. Am. Chem. Soc., 2008, 130: 6731-6733

[51] Tsotsalas M M, Kopka K, Luppi G, Wagner S, Law M P, Schfers M, De Cola L. ACS Nano, 2010, 4(1): 342-348

[52] Reilly R M. J. Nucl. Med., 2007, 48(7): 1039-1042

[53] Shokeen M, Fetting N M, Rossin. Q. J. Nucl. Med. Mol. Imaging, 2008, 52: 267-277

[54] Muthu M S, Wilson B. Nanomedicine, 2010, 5(2): 169-171

[55] 诸颖(Zhu Y), 冉铁成(Ran T C), 李睛暖(Li Q N), 徐晶莹(Xu J Y), 李文新(Li W X). 核化学与放射化学(J. Nucl. Radiochem. ), 2009, 32(1): 1-7

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[5] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[6] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[7] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[8] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[9] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[10] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[11] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[12] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[13] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[14] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[15] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.