English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1501-1506 前一篇   后一篇

• 放射化学专辑 •

F-18标记放射性药物的新方法与新技术

黄华璠, 梁坤, 刘玉鹏, 黄士堂, 褚泰伟*   

  1. 北京大学化学与分子工程学院 放射化学与辐射化学重点学科实验室 北京分子科学国家实验室 北京 100871
  • 收稿日期:2010-10-01 修回日期:2011-03-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail: twchu@pku.edu.cn E-mail:twchu@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20771011,21071010)资助

New Methods and Techniques for F-18-labeled Radiopharmaceuticals

Huang Huafan, Liang Kun, Liu Yupeng, Huang Shitang, Chu Taiwei*   

  1. Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2010-10-01 Revised:2011-03-01 Online:2011-07-24 Published:2012-03-15

PET显像技术具有高分辨率和高灵敏度。这一技术需要合适的正电子核素标记的药物。在一系列核素中,18F是最适用于PET显像的。但是,氟的化学性质限制了18F药物的合成策略,大部分药物的18F标记费时费力。本文介绍了近几年18F标记放射性药物的新方法与新技术,包括18F 脱标识法、18F-FDG直接标记多肽、Al18F络合标记、水溶液中18F-氟硼酸酯的标记、基于微流控芯片的PET药物标记合成技术等,旨在为有关研究者提供参考。

The availability of radiopharmaceuticals is one prerequisite for positron emission tomography (PET) investigation. 18F appears to be the best candidates among a number of positron emission nuclides. Nevertheless, the chemistry of fluorine limits 18F labeling strategies, the preparation of many 18F-labeling radiopharmaceuticals is still laborious and time-consuming. In this review, new 18F-labeling methods and techniques are described in radiopharmaceutical chemistry, including detagging 18F-labeled methodology, direct radiolabeling of peptides with FDG, Al18F-chelated labeling, aqueous 18F-labeling of boronic esters, microfluidics-based radiochemical synthesis technologies for PET probes and so on. This review will provide an overview in new 18F-labeling methods and techniques for researchers.

Contents
1 Introduction
2 Detagging 18F-labeling methodology
3 18F-labeling of peptides
3.1 Direct radiolabeling of peptides with [18F]FDG
3.2 Al 18F-labeling of NOTA conjugated peptides
4 Aqueous 18F-labeling of boronic esters
5 Microfluidics-based radiochemical synthesis technologies for PET probes
5.1 FDG synthesis using microfluidic devices
5.2 Other 18F-labeled PET probes prepared by microfluidics
6 Conclusion and outlook

中图分类号: 

()


[1] Bejot R, Fowler T, Carroll L, Boldon S, Moore J E, Declerck J, Gouverneur V. Angew. Chem. Int. Ed., 2009, 48: 586-589

[2] Boldon S, Moore J E, Gouverneur V. Chem. Commun., 2008, 31: 3622-3624

[3] Wuest F, Berndt M, Bergmann R, Hoff J V D, Pietzsch J. Bioconjugate Chem., 2008, 19: 1202-1210

[4] Namavari M, Cheng Z, Zhang R, De A, Levi J, Hoerner J K, Yaghoubi S S, Syud F A, Gambhir S S. Bioconjugate Chem., 2009, 20: 432-436

[5] Wuest F, Hultsch C, Berndt M, Bergmann R. Bioorg. Med. Chem. Lett., 2009, 19: 5426-5428

[6] Maschauer S, Prante O. Carbohydr. Res., 2009, 344: 753-761

[7] Maschauer S, Einsiedel J, Haubner R, Hocke C, Ocker M, Hübner H, Kuwert T, Gmeiner P, Prante O. Angew. Chem. Int. Ed., 2010, 49: 976-979

[8] Li Z B, Wu Z H, Chen K, Chin F T, Chen X Y. Bioconjugate Chem., 2007, 18: 1987-1994

[9] Marik J, Sutcliffe J L. Tetrahedron Lett., 2006, 47: 6681-6684

[10] Mu L J, Hhne A, Schubiger P A, Ametamey S M, Graham K, Cyr J E, Dinkelborg L, Stellfeld T, Srinivasan A, Voigtmann U, Klar U. Angew. Chem. Int. Ed., 2008, 47: 4922-4925

[11] McBride W J, Sharkey R M, Karacay H, DSouza C A, Rossi E A, Laverman P, Chang C H, Boerman O C, Goldenberg D M. J. Nucl. Med., 2009, 50: 991-998

[12] Laverman P, McBride W J, Sharkey R M, Eek A, Joosten L, Oyen W J G, Goldenberg D M, Boerman O C. J. Nucl. Med., 2010, 51: 454-461

[13] Ting R, Harwig C, Keller U, McCormick S, Austin P, Overall C M, Adam M J, Ruth T J, Perrin D M. J. Am. Chem. Soc., 2008, 130: 12045-12055

[14] Ting R, Adam M J, Ruth T J, Perrin D M. J. Am. Chem. Soc., 2005, 127: 13094-13095

[15] Harwig C W, Ting R, Adam M J, Ruth T J, Perrin D M. Tetrahedron Lett., 2008, 49: 3152-3156

[16] deMello A J. Nature, 2006, 442: 394-402

[17] Watts P, Haswell S J. Chem. Soc. Rev., 2005, 34: 235-246

[18] Jhnisch K, Hessel V, Lwe H, Baerns M. Angew. Chem. Int. Ed., 2004, 43: 406-446

[19] Thorsen T, Maerkl S J, Quake S R. Science, 2002, 298: 580-584

[20] Lee C C, Sui G, Elizarov A, Shu C J, Shin Y S, Dooley A N, Huang J, Daridon A, Wyatt P, Stout D, Kolb H C, Witte O N, Satyamurthy N, Heath J R, Phelps M E, Quake S R, Tseng H R. Science, 2005, 310: 1793-1796

[21] Elizarov A M, van Dam R M, Shin Y S, Kolb H C, Padgett H C, Stout D, Shu J, Huang J, Daridon A, Heath J R. J. Nucl. Med., 2010, 51: 282-287

[22] Lu S Y, Watts P, Chin F T, Hong J, Musachio J L, Briarda E, Pike V W. Lab Chip, 2004, 4: 523-525

[23] Briard E, Zoghbi S S, Siméon F G, Imaizumi M, Gourley J P, Shetty H U, Lu S, Fujita M, Innis R B, Pike V W. J. Med. Chem., 2009, 52: 688-699

[24] Chun J H, Lu S, Lee Y S, Pike V W. J. Org. Chem., 2010, 75: 3332-3338

[25] Saiki H, Iwata R, Nakanishi H, Rebecca Wong R, Ishikawa Y, Furumoto S, Yamahara R, Sakamoto K, Ozeki E. Appl. Radiat. Isot., 2010, 68: 1703-1708

[1] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[2] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[3] 冯迪, 王广华, 唐文来, 杨继全. 微流控阻抗流式细胞仪在单细胞检测中的应用[J]. 化学进展, 2021, 33(4): 555-567.
[4] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[5] 王志刚, 刘书琳, 刘安安, 张利娟, 余聪, 庞代文. 单病毒示踪[J]. 化学进展, 2021, 33(1): 13-24.
[6] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[7] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[8] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[9] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[10] 朱德斌*, 马文革, 邢晓波 . 电化学发光分析方法在核酸检测中的应用[J]. 化学进展, 2012, 24(12): 2367-2373.
[11] 林彩琴, 姚波* . 数字PCR技术进展[J]. 化学进展, 2012, 24(12): 2415-2423.
[12] 陈梦君, 杨万泰, 尹梅贞* . 纳米粒子的分类合成及其在生物领域的应用[J]. 化学进展, 2012, 24(12): 2403-2414.
[13] 杨嬅嬿, 熊焕明*, 余绍宁* . 量子点给药载体研究进展[J]. 化学进展, 2012, 24(11): 2234-2246.
[14] 牟甜甜, 张现忠*. PET心肌灌注显像剂[J]. 化学进展, 2012, (10): 1966-1973.
[15] 郝丽, 徐春秀, 程和勇, 刘金华, 殷学锋*. 微流控芯片测定单细胞内化学组分的进展[J]. 化学进展, 2012, 24(08): 1544-1553.