English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1478-1484 前一篇   后一篇

• 放射化学专辑 •

纳米材料与纳米技术在先进核能系统中的应用前瞻

石伟群*, 赵宇亮, 柴之芳   

  1. 中国科学院高能物理研究所 北京 100049
  • 收稿日期:2011-02-01 修回日期:2011-03-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail: shiwq@ihep.ac.cn E-mail:shiwq@ihep.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.91026007)资助

A Preview of Nano-Materials and Nano-Technologies Applied in Advanced Nuclear Energy System

Shi Weiqun*, Zhao Yuliang, Chai Zhifang   

  1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2011-02-01 Revised:2011-03-01 Online:2011-07-24 Published:2012-03-15

随着人类对核能需求的快速增长,为应对核能发展的挑战,世界主要核能国家已经开始了先进核能系统的研发。新材料与新技术被认为将在未来先进核能系统中发挥重要作用,其中纳米材料与纳米技术显示了在未来核能中广泛的潜在应用前景。纳米材料是近年来受到广泛重视的一种新型功能材料,本文综述了纳米材料与纳米技术在先进核燃料制造、乏燃料后处理、核废物处置以及核环境修复等核燃料循环领域的应用基础研究现状,并对纳米材料技术在未来先进核能系统中的应用发展趋势进行了展望。

With the rapid growth of human demands for nuclear energy, in response to the challenges of nuclear energy development, the world's major nuclear countries have started the R&D of advanced nuclear energy systems, in which new materials and new technologies are considered to play important roles. Nano-materials and nano-technologies, which have gain extensive attention in recent years, have shown a wide range of potential applications in future nuclear energy system. In this paper, the basic research progress of nano-materials and nano-technologies in advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental restoration was reviewed. Furthermore, the R&D trends of nano-materials and nano-technologies in future advanced nuclear energy system are discussed.

Contents
1 Introduction
2 The applications of nano-materials and nano-technologies in advanced nuclear fuel fabrication
3 The applications of nano-materials and nano-technologies in advanced nuclear fuel reprocessing
4 The applications of nano-materials and nano-technologies in nuclear waste disposal and management
5 The applications of nano-materials and nano-technologies in recognition and detection of radionuclides
6 Conclusions and outlook

中图分类号: 

()


[1] Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, U. S. Department of Energy, October, 2006

[2] http: //www. iaea. org/programmes/a2/

[3] Hill D J. Nature Mater., 2008, 7: 680-682

[4] Currall S C, King E B, Lane N, Madera J, Turner S. Nature Nanotech., 2006, 1: 153-155

[5] Wu C. Nature., 2010, 468: 589-590

[6] Wu H M, Yang Y G, Charles Cao Y. J. Am. Chem. Soc., 2006, 128: 16522-16523

[7] Burns P C, Kubatko K N, Sigmon G, Fryer B J, Gagnon J E, Antonio M R, Soderholm L. Angew. Chem. Int. Ed., 2005, 44: 2135-2139

[8] Sigmon G E, Ling J, Unruh D K, Moore Shay L, Ward M, Weaver B, and Burns P C. J. Am. Chem. Soc., 2009, 131: 16648-16649

[9] Sigmon G E, Weaver B, Kubatko K A, Burns P C. Inorg. Chem., 2009, 48(23): 10907-10909

[10] Forbes T Z, Gregory Mc Alpin J, Murphy R, Burns P C. Angew. Chem. Int. Ed., 2008, 47: 2824-2827

[11] Mir P, Pierrefixe S, Gicquel M, Gil A, Bo C. J. Am. Chem. Soc., 2010, 132: 17787-17794

[12] Diederich F, Thilgen C. Science, 1996, 271: 317-323

[13] Krasheninnikov AV, Banhart F. Nature Mater., 2007, 6: 723-733

[14] Bethune D S, JohnsonR D, SalemJ R, Devries M S, Yannoni C S. Nature, 1993, 366: 123-128

[15] Guo T, Diener M D, Chai Y, Alford M J, Haufler R E, McClure S M, Ohno T, Weaver J H, Scuseria G E, Smalley R E. Science, 1992, 257: 1661-1664

[16] Diener M D, Smith C A, Veirs D K. Chem. Mater., 1997, 9: 1773-1777

[17] Akiyama K, Zhao Y L, Sueki K, Tsukada K, Haba H, Nagame Y, Kodama T, Suzuki S, Ohtsuki T, Sakaguchi M, Kikuchi K, Katada M, Nakahara H. J. Am. Chem. Soc., 2001, 123: 181-182

[18] Wu X, Lu X. J. Am. Chem. Soc., 2007, 129: 2171-2177

[19] Infante I, Gagliardi L, Scuseria G E. J. Am. Chem. Soc., 2008, 130: 7459-7465

[20] Kurina I S, Popov V V, Rumyantsev V N. Atomi. Energ., 2006, 101: 802-808

[21] Yildiz O. J. Nucl. Mater., 2007, 366: 266-271

[22] Bhide M K, Kadam R M, Tyagi A K, Muthe K P, Salunke H G, Gupta S K, Vinu A, Asthana A, Godbole S V. J. Mater. Res., 2008, 23: 463-472

[23] Devaux X, Thomy A, Ghanbaja J. J. Mater. Sci., 1997, 32: 4957-4965

[24] Wang L, Yang Z M, Gao J H, Xu K M, Gu H W, Zhang B, Zhang X X, Xu B. J. Am. Chem. Soc., 2006, 128: 13358-13359

[25] Han H, Johnson A, Kaczor J, Kaur M, Paszczynski A, Qiang Y. J. Appl. Phys., 2010, 107: 09B520

[26] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106: 1105-1136

[27] Belloni F, Kutahyali C, Rondinella V, Carbol P, Wiss T, Mangione A. Environ. Sci. Technol., 2009, 43: 1250-1255

[28] Wang X K, Chen C L, Hu W P, Ding A, Xu D, Zhou X. Environ. Sci. Technol., 2005, 39: 2856-2860

[29] Chen C L, Li X, Zhao D, Tan X L, Wang X K. Colloids Sur. A, 2007, 302: 449-454

[30] Tan X L, Xu D, Chen C L, Wang X K, Hu W P. Radiochim. Acta, 2008, 96: 23-29

[31] Shao D D, Jiang Z Q, Wang X K, Li J X, Meng Y D. J. Phys. Chem. B, 2009, 133: 860-864

[32] Chen C L, Liang B, Ogino A, Wang X K, Nagatsu M. J. Phys. Chem. C, 2009, 113: 7659-7665

[33] Kumar P, Guliants V V. Micropor. Mesopor. Mater., 2010, 132: 1-14

[34] Ros-Lis J V, Casasus R, Comes M, Coll C, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Amoros P, El Haskouri J, Garro N, Rurack K. Chem-A Euro. J., 2008, 14: 8267-8963

[35] Moller K, Bein T. Chem. Mater., 1998, 10: 2950-2963

[36] Vidya K, Dapurkar S E, Selvam P, Badamal S K, Gupta N M. Micropor. Mesopor. Mater., 2001, 50: 173-179

[37] Vidya K, Gupta N M, Selvama P. Mater. Res. Bullet., 2004, 39: 2035-2048

[38] Kumar D, Bera S, Tripathi A K, Dey G K, Gupta N M. Micropor. Mesopor. Mater., 2003, 66: 157-167

[39] Krishna V, Kamble V S, Gupta N M, Selvam P. J. Phys. Chem. C, 2008, 112: 15832-15843

[40] Dyer A, Newton J, Pillinger M. Micropor. Mesopor. Mater., 2010, 130: 56-62

[41] Dyer A, Harjula R, Newton J, Pillinger M. Micropor. Mesopor. Mater., 2010, 130: 63-66

[42] Yousefi S R, Ahmadi S J, Shemirani F, Jamali M R, Salavati-Niasari M. Talanta, 2009, 80: 212-217

[43] Lee H L K, Kim J H, Kim J M, Kim S, Park J N, Hwang J S, Yeon J W, Jung Y J. J. Nanosci. Nanotechnol, 2010, 10: 217-221

[44] Birnbaum J C, Busche B, Lin Y H, Shaw W J, Fryxell G E. Chem. Commun., 2002, 1374-1375

[45] Lin Y H, Fiskum S K, Yantasee W, Wu H, Mattigod S V, Vorpagel E, Fryxell G E. Environ. Sci. Technol., 2005, 39: 1332-1337

[46] Fryxell G E, Lin Y H, Fiskum S, Birnbaum J C, Wu H. Environ. Sci. Technol., 2005, 39: 1324- 1331

[47] Fryxell G E, Mattigod S V, Lin Y H, Wu H, Fiskum S, Parker K, Zheng F, Yantasee W, Zemanian T S, Addleman T S, Liu J, Kemner K, Kelly S, Feng X D. J. Mater. Chem., 2007, 17: 2863-2874

[48] Krivovichev S V, Burns P C, Tananaev I G, Myasoedov B F. J. Alloy. Compound., 2007, 444: 457-463

[49] Lin C H, Chiang R K, Lii K H. J. Am. Chem. Soc., 2009, 131: 2068-2069

[50] Alekseev E V, Krivovichev S V, Depmeier W, Siidra O I, Knorr K, Suleimanov E V, Chuprunov E V. Angew. Chem. Int. Ed., 2006, 45: 7233-7235

[51] Krivovichev S V, Kahlenberg V, Kaindl R, Mersdorf E, Tananaev I G, Myasoedov B F. Angew. Chem. Int. Ed., 2005, 44: 1134-1136

[52] Albrecht-Schmitt T E. Angew. Chem. Int. Ed., 2005, 44: 4836-4838

[53] Rosseinsky M J. Nature Mater., 2010, 9: 609-610

[54] Walker S M, Shiv Halasyamani P, Allen S, OHare D. J. Am. Chem. Soc., 1999, 121: 10513-10521

[55] Halasyamani P S, Walker S M, OHare D. J. Am. Chem. Soc., 1999, 121: 7415-7416

[56] Kim J Y, Norquist A J, OHare D. J. Am. Chem. Soc., 2003, 125, 12688-12689

[57] Ok K M, Sung J, Hu G, Jacobs R M J, OHare D. J. Am. Chem. Soc., 2008, 130: 3762-3763

[58] Suzuki Y, Kelly S D, Kemner K M, Banfield J F. Nature, 2002, 419: 134-134

[59] Lee J H, Wang Z D, Liu J W, Lu Y. J. Am. Chem. Soc., 2008, 130: 14217-14226

[1] 顾忠茂, 柴之芳. 关于我国核燃料后处理/再循环的一些思考[J]. 化学进展, 2011, 23(7): 1263-1271.