English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1411-1428 前一篇   后一篇

• 放射化学专辑 •

综述KBS-3处置库近场还原性环境对处置安全的裨益

崔大庆1,2   

  1. 1. 瑞典 斯杜斯维克核能中心;
    2. 瑞典斯德哥尔摩大学 材料与环境化学系
  • 收稿日期:2010-11-01 修回日期:2011-04-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail: studsvik929@yahoo.se E-mail:studsvik929@yahoo.se

A Review of Beneficial Effects of Ruducing Environment at the Near-field of KBS-3 Repository

Daqing Cui1,2   

  1. 1. Stusvik Nuclear AB, 611 8;
    2. Material and Environmental Chemistry, Stockholm University, Sweden
  • Received:2010-11-01 Revised:2011-04-01 Online:2011-07-24 Published:2012-03-15

核能为减小温室气体排放引起的气候变化的风险起到了重要的不可替代的作用,但是自福岛核电站事故以来公众对核能安全越来越关注。为了消除人们的忧虑, 确保核能的持续发展,国际社会将加强旨在提高整个核燃料循环各个领域安全的研究。核废物,特别是高水平放射性废物的处置安全,同核电反应堆运行安全一样是核能安全的一个重要环节。乏燃料占世界高放废物中的大部分, 其中所含放射性核素需要与世隔绝十万年才能衰变到无害水平。因为很难预知此时段环境的变化, 评价乏燃料中放射性核素从深地层处置库通过地质圈和生物圈向人类环境的迁移将具有很大的不确定性。相对来说,我们能比较容易地验证在最不利的处置库近场环境下处置容器和乏燃料的化学行为。 如果我们能证明一个核废物处置库的工程屏障(近场)和地质屏障(远场)能够独立地保证处置库安全, 象喷气客机的两个发动机能独立保证飞机飞行一样, 证明近场工程屏障能确保放射性核素在十万年内从处置库向外迁移的速率足够慢,即使远场对放射性核素迁移的阻滞比较小,也能保证处置库的安全, (反之亦然), 我们就能确定此处置方案是安全可行的。本文就近十几年来对乏燃料在深地层处置库近场化学行为的研究进行了总结。 文章首先简单介绍了世界首个确定库址的高水平放射性废物处置库瑞典KBS-3乏燃料处置库的设计和库址特性,之后列举了文献报道的和作者本人主导的一系列实验成果, 就容器铸铁部分腐蚀所产生的氢气对乏燃料腐蚀的抑制作用和可能的乏燃料中裂变产物合金颗粒的催化剂作用进行了综述; 随后着重总结了作者本人主导的在模拟处置初期的γ辐射条件下(0.9Gy/h)地下水溶液 (2mM NaHCO3)中放射性同位素从乏燃料中浸出和在铸铁容器表面沉积的实验结果,证明了: (1)在用氩气除氧2mM NaHCO3溶液中乏燃料所含裂变产物(Sr-Cs-Tc-Mo)和锕系核素(238U和237Np)的浸出速率(与总含量之比)分别 为 10-6 /天和 10-7/天; 高毒性的239Pu浸出速率为5×10-9/天; (2)在含10%氢气的氩气平衡的相同溶液中,核素从乏燃料中的浸出会被完全阻断, 甚至以前已浸出的多价态核素238U,237Np,99Tc 和79Se等也会在乏燃料所含裂变产物合金颗粒的催化作用下被氢气还原并沉淀; (3)在与亚铁矿物(FeCO3)平衡的水溶液中,亚铁离子会被乏燃料表面水辐解产生的氧化性产物(H2O2,O2,OH · ) 氧化并沉淀在乏燃料表面和裂 隙之中, 并对乏燃料的近一步氧化腐蚀有明显的抑制作用; (4)在铜容器壳破损以后的很长时间内,从乏燃料浸出的多价态核素U, Tc, Se 和 Np能够被铸铁材料表面还原并沉淀; (5)在处置初期铜容器表面的腐蚀速率受γ辐射的影响不大, 约为 1—2μm/年, 并将会随着乏燃料中137Cs的衰变而减缓。 本文证明了KBS-3处置库具有的还原性环境对乏燃料处置安全的裨益, 为核废物处置库选址在还原性地层和设计具有铜包壳和大量铁材料的废物容器提供了依据, 谨望对国内高放废物处置库的设计和安全评价具有一定的借鉴作用。

The recent research activities, i.e. relevant publications and the authors experiments on chemical behaviors of spent nuclear fuel (SNF) and canister materials at near-field of KBS-3 deep geological repository were reviewed. The advantages of reductive substances at KBS-3 repository to the spent fuel disposal safety were discussed. Using data from literatures and experiments, the author demonstrated the blocking effect of hydrogen generated for iron canister corrosion on SNF dissolution, and discussed the reaction mechanism. It is also proved that the γ radiation expected at the early stage of disposal and micro mole level oxidative species in water solution can only slightly enhance the corrosion rate of copper canister to μm/y level, still 103 times slower than that at air saturated conditions. During a long period of time after copper canister leaks, under combined effects of iron canister material, hydrogen and fission product alloy particle catalysts, SNF dissolution can be depressed or blocked, and most radiotoxic multivalent radionuclides U, Np, Tc and Se released from SNF can be reduced and precipitated. This paper supplies scientific bases for the sitting of a SNF repository at a stable reducing area, and designing of canisters with massive iron material.

中图分类号: 

()


[1] The Nuclear Communications Network.www.worldnuclear.org, 3 June 2009/News N° 41

[2] Werme L, Sellin P, Kjellbert N. Copper Canisters for Nuclear High Level Waste Disposal. Corrosion Aspects, SKB TR 92-26, 1992

[3] KBS-3, Final Storage of Spend Nuclear Fuel. Report by the Swedish Nuclear Fuel Supply Co. Stockholm, Sweden, 1983

[4] Bernard P, Barre B, Camarcat N, Boidron M, Boullis B, Cavedon J M, Iracane D. Progress in R&D relative to high level and long-lived radioactive wastes management: 1991 French Law. Proceedings of the Conference GLOBAL_99, Jackson Hole (USA), 29 Aug. -3 Sep. 1999

[5] Poinssot C, Ferry C, Lovera P, Jegou C, Gras J M. Journal of Nuclear Materials 2005, 346: 66-77

[6] Thomas L E, Einziger R E, Woodey R E. J. Nucl. Mater., 1989, 166: 243-251

[7] Shoesmith D W. J. Nucl. Mater., 2000, 282: 1-31

[8] Eriksen T E, Eklund U B, Werme L, Bruno J. J. Nucl. Mater., 1995, 227: 76-82

[9] Puigdomenech I, Trotignon L, Kotelnikova S, Pedersen K, Griffault L, Michaud V, Lartigue J E, Hama K, Yoshida H, West J M, Bateman K, Milodowski A E, Banwart S A, Rivas-Perez J, Tullborg E L. Mat. Res. Soc. Symp. Proc., 1999, 608: 179-184

[10] King F, Ahonen L, Taxén C, Vuorinen U, Werme L. Copper corrosion under expected conditions in a deep geologic repository. SKB Technical Report TR-01-23, 2001

[11] Cui D Q, Ekeroth E, Fors P, Spahiu K. The interaction of dissolved hydrogen with spent fuel or UO2 doped with alpha emitters and its effect on radionuclide release under deep repository conditions, CAN 149: 520263, AN 2008: 871114, Scientific basis for nuclear waste management, Mat. Res. Soc. Symp., 2008

[12] Schmidt K H, J. Phys. Chem., 1977, 81: 1257-1263

[13] Spahiu K, Cui D, Lundstrm M. Radiochimica Acta, 2004, 92: 625-629

[14] Carbol P, Cobos-Sabate J, Glatz J P, Grambow B, Kienzler B, Loida A, Martinez A, Valiente E, Metz V, Quiones J, Ronchi C, Rondinella V, Spahiu K, Wegen D H, Wiss T. SKB Technical Report TR-05-09, Stockholm, 2005, p. 139

[15] Rai D, Felmy A R, Ryan J L. Inorg. Chem., 1990, 29: 260-264

[16] Loida A, Metz V, Kinzler B. Mat. Res. Soc. Symp. Series, 2007, 985: 15-20

[17] Metz V, Bohnert V E, Kelm M, Schild D, Reinhardt J, Kienzler B, Buchmeiser M. Mat. Res. Soc. Symp. Series, 2007, 985: 33-40

[18] Zehavi D, Rabani J. J. Phys. Chem., 1972, 76: 312-319

[19] Pastina B, LaVerne J A. J. Phys. Chem. A, 2001, 105: 9316-9322

[20] Eriksen T, Jonsson M, Merino J. J. Nucl. Mat., doi: 10.1016/j. jnucmat. 2007.12.003, 2008

[21] Spahiu K, Werme L, Eklund U B. Radiochim. Acta, 2000, 88: 507-511

[22] Albinsson Y, Jensen A, Oversby V, Werme L. Mat. Res. Soc. Symp., 2003, 757: 407-413

[23] Ollila K, Albinsson Y, Oversby V, Cowper M. SKB Technical Report TR-03-13, 2003

[24] Spahiu K, Eklund U B, Cui D, Lundstrm M. Mat. Res. Soc. Symp., 2002, 713: 633-638

[25] Loida A, Grambow B, Geckeis H. Proceedings ICEM 01, Bruges, Belgium, 2001

[26] Loida A, Metz V, Kienzler B, Geckeis H. J. Nucl. Mat., 2005, 346: 24-31

[27] Jonsson M, Nielsen F, Ekeroth E, Eriksen T. Mat. Res. Soc. Symp., 2003, 807: 385-390

[28] Grambow B, Loida A, Dressler P, Geckeis H, Gago J, Casas I, de Pablo J, Gimenez J, M. E. Torrero M E. FZKA Report 5702, Forschungszentrum Karlsruhe, 1996

[29] Grambow B, Loida A, Martinez-Esparza A, Diaz-Arocas P, de Pablo J, Paul J L, Marx G, Glatz J P, Lemmens K, Ollila K, Christensen H. EUR19140 EN, 2000

[30] Farrel J, Bostick W, Jarabek R, Fiedor N. Ground Water, 1999, 37(4): 618

[31] Cui D, Spahiu K. Radiochim. Acta, 2002, 90: 1-6

[32] King F, Quinn M J, Miller H H. SKB Technical Report TR-99-27, 1999

[33] Shoesmith D W. NWMO Technical Report TR-2007-03, Toronto, 2007

[34] Sunder S, Boyer G D, Miller N H. J. Nucl. Mater., 1990, 175: 163-169

[35] Broczkowski M E, Noel J J, Shoesmith D W. J. Nucl. Mat., 2005, 346: 16-23

[36] King F, Shoesmith D. SKB Technical Report TR-04-20, Stockholm, 2004

[37] Broczkowski M E, Goldik J, Santos B, Noel J, Shoesmith D. Mat. Res. Soc. Symp. Proc., 2007, 985: 3-14

[38] Nilsson S, Jonsson M. J. Nucl. Mat., 2008, 372: 160-163

[39] Trummer M, Nilsson S, Jonsson M. J. Nucl. Mat., 2008, submitted.

[40] Jonsson M, Nielsen F, Roth O, Ekeroth E, Nilsson S, Hossain M. Environ. Sci. Technol., 2007, 41: 7087-7093

[41] Cui D, Low J, Sjstedt C J, Spahiu K. Radiochim. Acta, 2004, 92: 551-555

[42] Muzeau B. Ph. D. Thesis, University of Paris XI, Orsay, 2007, 274

[43] Rondinella V, Cobos J, Wiss T. Mat. Res. Soc. Symp. Proc., 2004, 824: 167-174

[44] Jegou C, Muzeau B, Broudic V, Poulesquen A, Roudil D, Jorion F, Corbel C. Radiochim. Acta, 2005, 93: 35-42

[45] Muzeau B, Jégou C, Delaunay F, Broudic V, Brevet A, Catalette H, Simoni E. J. Alloy Comp., 2007, doi: 10.1016/j. jallcom. 2007.12.054.

[46] Newton T W. ERDA Critical Review Series. NTIS, Springfield VA, 1975

[47] Baker F B, Newton T W. J. Phys. Chem., 1961, 65: 1897-1899

[48] Ekeroth E, Jonsson M. J. Nucl. Mat., 2003, 322: 242-248

[49] Cachoir C, Carbol P, Cobos J, Glatz J P, Grambow B, Lemmens K, Martinez A, Menecart T, Ronchi C, Rondinella V, Spahiu K, Wegen D. ITU Report SCA 2005/1, 2005

[50] Poinssot C, Ferry C, Grambow B, Kelm M, Spahiu K, Martinez A, Johnson L, Cera E, de Pablo J, Quinones J, Wegen D, Lemmens K, McMenamin T. Mat. Res. Symp. Proc., 2006, 932: 421-432

[51] Christensen H, Sunder S. Nuclear Technology, 2000, 131: 102-123

[52] Liu J, Neretniks I. Mat. Res. Soc. Symp. Proc., 1995, 353: 1179-1186

[53] Grauer R. SKB Technical Report TR 91-39, Stockholm, 1991

[54] Wren J C, Shoesmith D W, Sunder S. J. Electrochem. Soc., 2005, 152: B470-B481

[55] Jensen A , Fors P, Skarnemark G, Albinsson Y. Deliv. 1.5.3, EU-NF-PRO, 2006

[56] Icenhour A, Toth L, Wham R, Brunson R. Nuclear Technology, 2004, 146: 206-209

[57] Haschke J M, Allen T H, Stakebake J L. J. Alloys Comp., 1996, 243: 23-35

[58] Korzhavi P, Vitos D, Andersson D, Johansson B. Nature Materials, 2004, 3: 224-228

[59] Colmenares C A. Prog. Solid State Chem., 1984, 15: 257-364

[60] Imizu Y, Tanabe K, Hattori H. Journal of Catalysis, 1979, 56: 303-314

[61] Devoy J, Haschke J, Cui D, Spahiu K. Mat. Res. Soc. Symp. Series, 2003, 807: 41-46

[62] Spahiu K, Devoy J, Cui D, Lundstrm M. Radiochim. Acta, 2004, 92: 597-601

[63] Ekeroth E, Jonsson M, Eriksen T E, Ljungqvist K, Kovacs S, Puigdomenech I. J. Nucl. Mater., 2004, 334: 35-39

[64] LaVerne J A, Tandon L. J. Phys. Chem. B, 2003, 107: 13623-13628

[65] Petrik N G, Alexandrov A B, Vall A I. J. Phys. Chem. B, 2001, 105: 5935-5944

[66] LaVerne J A, Tandon L. J. Phys. Chem. B, 2002, 106: 380-386

[67] Stultz J, Paffet M T, Joyce S A. J. Phys. Chem. B, 2004, 108: 2362-2364

[68] Cui D, Puranen A, Devoy J, Schderger A, Leupin O X, Wersin P, Gens R, Spahiu K. J. Radioanal. Nucl. Chem., 2009, 282: 349-354

[69] Puranen A, Jonsson M, Dhn R, Cui D Q. Journal of Nuclear Materials, 2009, 392(3): 519-524

[70] Kvashnina K, Butorin S, Cui D, Puranen A, Gens R. Journal of Physics: Conference Series, 2009, 190: art. no. 012191

[71] Puranen A, Jonsson M, Dhn R, Cui D Q. Journal of Nuclear Materials, 2010, 406(2): 230-237

[72] Wegen D, Carbol P, Seibert A, Gouder T, Jonsson M, Trummer M, Loida A, Kienzler B, Cui D, Spahiu K. Redox processes affecting the spent fuel sourterm, 2nd Annual Workshop Proc. 7th EC FP-Recosy, Karlsruhe Institute of Technology, KIT SCIENTIFIC REPORTS 7557, 2010


[73] Cui D Q, Low J, Lungdsstrm M, Spahiu K. Mat. Res. Soc. Symp. Series, 2004, 807: 89-94


[74] Cui D, Rondinella V V, Low J, Pan J, Tamborini G, Spahiu K. On the behavior of spent fuel under simulated early canister-failure conditions. 2006 International High Level Radioactive Waste Management Conference, Las Vegas (USA) 30 April -4 May 2006, ANS Proceedings of the Conference 925 (2006), CAN 149: 114117, AN 2008: 161931

[75] Cui D. On near-field chemistries of redox sensitive radionuclides, effects of iron canister material. Mobil fission and activation products in nuclear waste disposal. International workshop. 2007-01-16, 19, La Baule, France (http: //mofap07.in2p3.fr/18janvier/Cui. pdf)

[76] Cui D, Ranebo Y, Low J, Rondinella V V, Pan J, Spahiu K. “Immobilization of Radionuclides on Iron Canister Material at Simulated Near-field Conditions” MRS 2008, published at Scientific basis for nuclear waste management, Mat. Res. Soc. Symp. Proceeding, 2009. DOI: 10.1557/PROC-1124-Q02-04


[77] Cui D, Low J, Spahiu K. Energy & Environmental Sceince, DOI: 10.1039/C0EE00582G. 2011


[78] Johnson L, Günther-Leopold I, Waldis J K, Linder H P, Low J, Cui D, Ekeroth E, Zwicky H U, Spahiu K, Evins L Z. J. Nucl. Mat., 2011, accepted

[79] Forsyth R. An evaluation of results from the experimental programme performed in the Studsvik Hot Cell Laboratory. SKB Technical Report 97-25, December 1997

[80] Ekeroth E, Low J, Zwicky H U, Spahiu K. Corrosion Studies with High Burnup LWR Fuel in Simulated Groundwater. MRS proceeding 1124-Q02-07, 2008

[81] Cui D, Rondinella V V, Low J, Spahiu K. Applied Catalysis B: Environmental, 2010, 94: 173-178

[82] Mattsson E. External corrosion of copper canisters during the initial phase of the repository. SKB Encapsulation Project, PM 97-3420-22, Stockholm, 1997

[83] Marsh G P, Taylor K J, Harker S H. The kinetics of pitting corrosion of carbon steel. SKB TR 91-62, SKB, Stockholm, 1991

[84] Kim S, Chun K, Kang K C, Baik M, Kwon S, Choi J. J. Ind. Eng. Chem., 2007, 13(6): 959-964

[85] Robit-Pointeau V, Poinssot C, Vitorge P, Grambow B, Cui D, Spahiu K, Catalette H. Mater. Res. Soc. Symp. Proc., 2006, 932: 489-496

[86] Stieff L R. Am. Mineral., 1956, 41: 675-688

[87] Fuchs L H, Gebert E. Am. Mineral., 1958, 43: 243-248

[88] Dubinchuk V T, Naumova I S, Kravtsova I Y, Sidorenko G A. Mineral. Zh., 1981, 3: 81

[89] Speer J A. Rev. Mineral., 1980, 5: 113

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.