English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1400-1410 前一篇   后一篇

• 放射化学专辑 •

高放废物地质处置中的模型

王祥云1,*, 陈涛2, 刘春立1   

  1. 1. 北京分子科学国家实验室 北京大学化学与分子工程学院应用化学系 北京 100871;
    2. 华北电力大学核科学与工程学院 北京 102206
  • 收稿日期:2011-01-01 修回日期:2011-04-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail: xywang@pku.edu.cn E-mail:xywang@pku.edu.cn

Models Used in Deep Geological Deposit of High-Level Radioactive Waste

Wang Xiangyun1,*, Chen Tao2, Liu Chunli1   

  1. 1. Beijing National Laboratory for Molecular Science, Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
    2. School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2011-01-01 Revised:2011-04-01 Online:2011-07-24 Published:2012-03-15

我国将采用深地质处置的方法处理核能发展所产生的大量高水平放射性废物。为了准确地预测核素的迁移行为,评估处置库的安全性,除了实验之外,还必须使用模型。本文对高放废物地质处置中所涉及的模型,以及与模型相关的软件、数据库做了综述,重点叙述了用于化学种态分析的地球化学模型,扼要介绍了多场耦合模型。此外还简要报告了本实验室核素迁移实验数据的处理方法和程序。

China has decided to deposit high level radioactive waste (HLW) that will be produced by quickly developing nuclear power industry. In order to assess the repository safety and predict the migration behavior of radionuclides that could be released when HLW canisters would be damaged. In addition to experimental investigations modeling has also to be used for these purposes. In this paper models involved in deep geological deposit of HLW, relevant software, and necessitated databases are reviewed with emphasis on geochemical models for chemical speciation. Multi-field coupling models are also described briefly. Finally, methods and programs for treatment of migration experimental data used in our laboratory are schematically reported.

中图分类号: 

()


[1] Jardine P M, Mehlhorn T L, Larsen I L, Bailey W B, Brooks S C, Roh Y, Gwo J P. J. Contam. Hydrol., 2002, 55(1/2): 137-159

[2] Spycher N F, Sonnenthal E L, Apps J A. J. Contam. Hydrol., 2003, 62/63(sp): 653-673

[3] Xu T F, Sonnenthal E, Bodvarsson G. J. Contam. Hydrol., 2003, 64(1/2): 113-127

[4] Mangold D C, Tsang C F. Rev. Geophys., 1991, 29(1): 51-79

[5] Darban A K, Yong R N, Ravaj S. Appl. Clay Sci., 2008, 47(1/2): 127-132

[6] Crawford J. Geochemical Modeling-A review of Current Capabilities and Future Directions. SNV Report 262, Swedish Environmental Protection Agency, 1999

[7] Zachara J M, Serne J, Freshley M, Mann F, Anderson F, Wood M, Jones T, Myers D. Vadose Zone J., 2007, 6(4): 982-1003

[8] Liu W, Wilder D G, Blink J A, Blair S C, Buscheck T A, Chesnut D A, Glassley W E, Lee K, Roberts J J. The Testing of Thermal-Mechanical-Hydrological-Chemical Process Using A Large Block. Reston: ASCE, 1994(1048): 1938-1945

[9] Manteufel R D, Ahola M P, Turner D R, Chowdhury A H. An Assessment of Couple Thermal-Hydrologic-Mechanical-Chemical Processes. Reston: ASCE, 1993(1115): 576-583

[10] Hummel W, Berner U, Curti E, Pearson F J, Thoenen T. Radiochim. Acta, 2002, 90(9/11): 805-813

[11] Altmaier M, Brendler V, Hagemann S, Herbert H J, Kienzler B, Marquardt C M, Moog H C, Neck V, Richter A, Voigt W, Wilhelm S. THEREDA - A Contribution to Long-Term Safety of Repositories of Nuclear and Non-Nuclear Wastes. ATW-Int. J. Nucl. Power, 2008, 53(4): 249-253

[12] Mompean F J, Wanner H. Radiochim. Acta, 2003, 91(11): 617-621

[13] Harvey K B. Measurement of Diffusive Properties of Intact Rock. AECL-11439, 1996

[14] García-Gutiérrez M, Cormenzana J L, Missana1 T, Mingarro1 M, Molinero J. J. Iberian Geo., 2006, 32(1): 37-53

[15] Andersson P, Byegard J, Tullborg E L, Doe T, Hermanson J, Winberge A. J. Contam. Hydrol., 2004, 70(3/4): 271-297

[16] 王祥云(Wang X Y), 陈涛(Chen T), 刘春立(Liu C L). 中国科学 B辑(Science in China, Series B), 2009, 52(11): 2020-2032

[17] Koretsky C. J. Hydrol., 2000, 230(3/4): 127-171

[18] Crawford J. Geochemical Modeling - A Review of Current Capabilities and Future Directions. SNV Report 262, Swedish Environmental Protection Agency, 1999

[19] Merkel B J, Planer-Friedrich B. Groundwater Geochemistry- A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems. Berlin: Springer-Verlag, , 2005

[20] Wolery T J. EQ3/6 (7.0): A Software Package for Geochemical Modeling of Aqueous Systems: Package Overview and Installation Guide. UCRL-MA-110661PT, 1992

[21] Parkhurst D L, Appelo C A J. Users guide to PHREEQC (2.0): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. USGS Water-Resources Investigations Report 99-4259, 1999

[22] NAC Consulting. Fuel-Trac: Nuclear Fuel Cycle Database. http: //www. nacworldwide. com/ConsultingNFCPStatusReports. aspx

[23] sthols E, Wanner H. TDB-0, The NEA Thermochemical Data Base Project, Version of 25th February 2000. http: //www. nea. fr/html/dbtdb/guidelines/tdb0new. pdf

[24] Voigt W, Brendler V, Marsh K, Rarey R, Wanner H, Gaune-Escard M, Cloke P, Vercouter T, Bastrakov E, Hagemann S. Pure Appl. Chem., 2007, 79(5): 883-894

[25] Iyer R M, Oblozinsky P, Muir D W, Schwerer O. J. Radioanal. Nucl. Chemi., 1999, 239(1): 139-141

[26] Roberto J B, de la Rubia T D. JOM, 2007, 59(4): 16-19

[27] Yui M, Rai D, Ochs M, Shibata M. J. Nucl. Sci and Technol., 2003, 40(5): 356-362

[28] Baik M H, Lee S Y, Lee J K, Kim S S, Park C K, Choi J W. Nucl. Eng. & Technol., 2008, 40(7): 593-608

[29] Altmaier M, Brendler V, Hagemann S, Herbert H J, Kienzler B, Marquardt C M, Moog H C, Neck V, Richter A, Voigt W, Wilhelm S. ATW-Int. J. Nucl. Power, 2008, 53(4): 249

[30] Bion L. Radiochim. Acta, 2003, 91(11): 633-637.

[31] 周文斌(Zhou W B), 张展适(Zhang Z S), 史维浚(Shi W J). EQ3/6及其在核废物处置领域的应用(EQ316 and Applications in the Field of Nuclear Waste Disposal), 北京: 原子能出版社(Beijing: Atomic Energy Press), 2004

[32] Merkel B J, Planer-Friedrich B. 朱义年, 王焰新译, 地下水地球化学模拟的原理及应用, 北京: 中国地质大学出版社(Beijing: China University of Geosciences Press), 2005

[33] Allison J D, Brown D S, Novo-Gradac K J. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 Users Manual. EPA/600/3-91/021, 1991

[34] Kulik D A. Am. J. Sci., 2002, 302(3): 227-279

[35] Bethke C M, Yeakel S. The Geochemists Workbench Release 8.0, GWB Essentials Guide, Hydrogeology Program. http: //www.geology.illinois.edu/Hydrogeology/pdf/GWBessentials.pdf

[36] Van der Lee J. Thermodynamic and Mathematical Concepts of CHESS. Technical Report Nr.LHM/RD/98/39, 1998

[37] Ball J W, Nordstrom D K. Users Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters. U. S. Geological Survey Open-File Report 91-183, 1991

[38] Verweij W. CHEAQS (A Program for Calculating Chemical Equilibria in Aquatic Systems). http: //home. tiscali. nl/cheaqs/index. html

[39] May P M, Murray Y K. Talanta, 1991, 38(12): 1419-1426

[40] 陈涛(Chen T), 王祥云(Wang X Y), 田文宇(Tian W Y), 孙茂(Sun M), 黎春(Li C), 刘晓宇(Liu X Y), 王路化(Wang L H), 刘春立(Liu C L). 物理化学学报(Acta Physico-chimica Sinica), 2010, 26(4): 811-816

[41] 陈涛(Chen T), 王祥云(Wang X Y), 田文宇(Tian W Y), 孙茂(Sun M), 黎春(Li C), 刘春立(Liu C L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(3): 386-390

[42] Li X L. TIMODAZ (Thermal Impact on the Damaged Zone Around a Radioactive Waste Disposal in Clay Host Rocks). http: //www. timodaz. eu/default. aspx

[43] Jing L R, Feng X T. Chin. J. Rock Mech. Eng., 2003, 22(10): 1704-1715

[44] Crawford J. Geochemical Modeling-A Review of Current Capabilities and Future Directions. SNV Report 262, Stockholm, Swedish Environmental Protection Agency, 1999

[45] Chen Z, Anderson G. Environmental Applications of Geochemical Modeling, NY: Cambridge University Press, 2002

[46] Darban A K, Yong R N, Ravaj S. Appl. Clay Sci., 2010, 47(1/2): 127-132

[47] Xu T, Gerard F, Pruess K, Brimhall G. Modeling Non-Isothermal Multiphase Multi-Species Reactive Chemical Transport in Geologic Media, LBNL-40504 UC-400, 1997

[48] Shen H Y, Nikolaidis N P. Ground Water, 1997, 35(1): 67-78

[49] Martinez F S J, Pachepsky Y A, Rawls W J. Vadose Zone J., 2009, 8(1): 242-249

[50] Harvey K B, Measurement of Diffusive Properties of Intact rock. AECL-11439, 1996

[51] Zhang M, Takeda M, Nakajima H. Strategies for Solving Potential Problems Associated with Laboratory Diffusion and Batch Experiments-Part 1: An Overview of Conventional Test Methods. WM06 Conference, 2006

[52] Aertsens M, De Canniere P, Lemmens K, Maes N, Moors H. Phys. Chem. Earth, 2008, 33(14/16): 1019-1025

[53] Holtta P, SiitariKauppi M, Hakanen M, Huitti T, Hautojarvi A, Lindberg A. J. Contam. Hydrol., 1997, 26(1/4): 135-145

[54] Chen T, Sun M, Li C, Tian W Y, Liu X Y, Wang L H, Wang X Y, Liu C L. Radiochim. Acta, 2010, 98(5): 301-305

[55] 陈涛(Chen T), 田文宇(Tian W Y), 孙茂(Sun M), 黎春(Li C), 刘晓宇(Liu X Y), 王路化(Wang L H), 王祥云(Wang X Y), 刘春立(Liu C L). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(5): 761-766

[56] Zhang M, Takeda M, Nakajima H. Strategies for Solving Potential Problems Associated with Laboratory Diffusion and Batch Experiments-Part 2: Future Improvements. WM06 Conference, 2006

[57] Miguel A M. Numerical and Analytical Solutions of Dispersion in a Finite Adsorbing Porous Medium. Water Resour. Bull., 1974, 10(1): 80-90

[58] Grolimund D, Elimelech M, Borkovec M, Barmettler K, Kretzschmar R, Sticher H. Environ. Sci. Technol., 1998, 32(22): 3562-3569

[59] Pang L P, Goltz M, Close M. J. Contam. Hydrol., 2003, 60(1/2): 123-134

[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[3] 张进, 蔡文生, 邵学广. 近红外光谱模型转移新算法[J]. 化学进展, 2017, 29(8): 902-910.
[4] 尹晓尧, 李非, 伯晓晨, 骆志刚, 左小磊. 化学中的计算——DNA计算的发展与模型概述[J]. 化学进展, 2017, 29(11): 1297-1315.
[5] 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223.
[6] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[7] 雷东升, 童慧敏, 张磊, 张星, 张胜利, 任罡. 胆固醇酯转移蛋白在胆固醇酯转移中的结构与功能[J]. 化学进展, 2014, 26(05): 879-888.
[8] Barbara K. Dunn. 乳腺癌预防的三期临床试验:雌激素靶向药物,选择性雌激素受体调控剂和芳香酶抑制剂[J]. 化学进展, 2013, 25(09): 1429-1449.
[9] 王嫣, 尤明. 增生平用于口腔癌化学预防[J]. 化学进展, 2013, 25(09): 1594-1600.
[10] 边颖慧, 董徐静, 朱丽君, 周玉路, 项玉芝, 夏道宏. 石油组分及其模型化合物的超分子化学作用[J]. 化学进展, 2013, 25(08): 1260-1271.
[11] 毕鹏禹, 常林, 牟瑛琳, 刘建友, 吴昱, 魏芸. 溶剂浮选技术的研究现状与展望[J]. 化学进展, 2013, 25(08): 1362-1374.
[12] 娄嵩, 刘永峰, 白清清, 邸多隆*. 大孔吸附树脂的吸附机理[J]. 化学进展, 2012, 24(08): 1427-1436.
[13] 李昂, 张春玲*, 孙国恩, 牟建新*. POMSS配位化合物[J]. 化学进展, 2012, 24(07): 1309-1323.
[14] 方彦彦, 李倩, 王晓琳*. 解读纳滤:一种具有纳米尺度效应的分子分离操作[J]. 化学进展, 2012, 24(05): 863-870.
[15] 崔大庆. 综述KBS-3处置库近场还原性环境对处置安全的裨益[J]. 化学进展, 2011, 23(7): 1411-1428.
阅读次数
全文


摘要

高放废物地质处置中的模型