English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1372-1378 前一篇   后一篇

• 放射化学专辑 •

铀酰配合物单晶的合成与结构

刘春立*, 王路化   

  1. 北京分子科学国家实验室 放射化学与辐射化学重点学科实验室 北京大学化学与分子工程学院 北京 100871
  • 收稿日期:2010-12-01 修回日期:2011-04-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail: liucl@pku.edu.cn E-mail:liucl@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.10775008,11075006,91026010)资助

Synthesis and Crystal Structure of Uranyl Complexes

Liu Chunli*, Wang Luhua   

  1. Beijing National Laboratory for Molecular Sciences, Radiochemistry & Radiation Chemistry Key Laboratory for Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Received:2010-12-01 Revised:2011-04-01 Online:2011-07-24 Published:2012-03-15

铀作为重要的核材料,是核燃料循环中最受关注的元素之一。在铀的开采、纯化以及应用等过程中,不可避免地会产生铀的释放。环境中的无机酸根及土壤有机质的羧酸根可与铀形成配合物,从而可能影响其迁移与吸附行为。通过研究铀酰配合物晶体的结构可以为吸附或迁移模型以及从分子水平探讨吸附机理提供结构参数。本文综述了国际上铀酰固体化学领域的研究进展,阐述了铀酰配合物的结构特点,铀酰无机含氧酸、过氧及草酸配合物的合成与晶体结构。在对国内外主要开展铀酰配合物晶体研究的课题组之研究工作进行归纳和分析的基础上,提出铀酰配合物研究的思路和建议,以期为国内锕系元素固体化学研究工作的开展提供参考。

Uranium is one of the most important nuclear materials. It is the core of the nuclear fuel cycle and the element to which much attention has been paid since it is inevitable that uranium is released in the process of uranium mining, enrichment, oxide fuel manufacturing and spent nuclear fuel reprocessing. Inorganic acid and carboxylic acid group of the humus can be coordinated to uranyl thus change its migration and sorption behavior in the environment. By analyzing the synthesis and crystal structure of uranyl complexes we can provide essential structure data for sorption modeling and sorption mechanism in the molecular level. The structural characters of uranyl primary building units and the complexes that may form with common inorganic and organic acids in the aquatic solutions have been reviewed. A proposal followed by the summary and analysis of the work carried out in the groups in the world of uranyl complexes based on environmentally concerned acids and some other oxo containing ligands is presented.

中图分类号: 

()


[1] Yudintsev S V, Stefanovsky S V, Ewing R C. in Structural Chemistry of Inorganic Actinide Compounds (Eds. Krivovichev S V, Burns P C, Tananaev I G). Amsterdam: Elsevier, 2007. 457

[2] Doran M B, Norquist A J, O'Hare D. Chem. Commun., 2002, 2946-2947

[3] Doran M B, Norquist A J, O'Hare D. Inorg. Chem., 2003, 42: 6989-6995

[4] Norquist A J, Doran M B, Thomas P M, O'Hare D. Inorg. Chem., 2003, 42: 5949-5953

[5] Doran M B, Norquist A J, Stuart C L, O'Hare D. Acta Cryst. Sec. E, 2004, 60: m996-m998

[6] Norquist A J, Doran M B, O'Hare D. Acta Cryst. Sec. E, 2005, 61: m807-m810

[7] Doran M B, Norquist A J, O'Hare D. Acta Cryst. Sec. E, 2005, 61: m881-m884

[8] Krivovichev S V, Kahlenberg V Z. Anorg. Allg. Chem., 2004, 630: 2736-2742

[9] Krivovichev S V, Kahlenberg V, Avdontseva E Y, Mersdorf E, Kaindl R. Eur. J. Inorg. Chem., 2005, 1653-1656

[10] Krivovichev S V, Kahlenberg V, Kaindl R, Mersdorf E, Tananaev I G, Myasoedov B F. Angew. Chem. Int. Ed., 2005, 44: 1134 -1136

[11] Krivovichev S V, Kahlenberg V, Krivovichev S V, Kahlenberg V, Tananaev I G, Kaindl R, Mersdorf E, Myasoedov B F. J. Am. Chem. Soc., 2005, 127: 1072-1073

[12] Alekseev E V, Krivovichev S V, Depmeier W. Angew. Chem. Int. Ed., 2008, 47: 549-551

[13] Ling J, Sigmon G E, Burns P C. J. Solid State Chem., 2009, 182: 402-408

[14] Almond P M, Albrecht-Schmitt T E. Inorg. Chem., 2002, 41: 1177-1183

[15] Almond P M, Albrecht-Schmitt T E. Inorg. Chem., 2003, 42: 5693-5698

[16] Almond P M, Albrecht-Schmitt T E. Am. Mineral., 2004, 89: 976-980

[17] Francis R J, Drewitt M J, Halasyamani P S, Ranganatha- char C, O'Hare D, Clegg W, Teat S J. Chem. Commun., 1998, 279-280

[18] Doran M, Walker S M, O'Hare D. Chem. Commun., 2001, 1988-1989

[19] Doran M B, Stuart C L, Norquist A J, O'Hare D. Chem. Mater., 2004, 16: 565-566

[20] Ok K M, Baek J, Halasyamani P S, O'Hare D. Inorg. Chem., 2006, 45: 10207-10214

[21] Burns P C, Alexopoulos C M, Hotchkiss P J, Locock A J. Inorg. Chem., 2004, 43: 1816-1818

[22] Yu Y, Zhan W, Albrecht-Schmitt T E. Inorg. Chem., 2007, 46: 10214-10220

[23] Nelson A G D, Bray T H, Albrecht-Schmitt T E. Angew. Chem. Int. Ed., 2008, 47: 6252-6254

[24] Nelson A G D, Bray T H, Stanley F A, Albrecht-Schmitt T E. Inorg. Chem., 2009, 48: 4530-4535

[25] Gesing T M, Ruscher C H. Z. Anorg. Allg. Chem., 2000, 626: 1414-1420

[26] Locock A J, Burns P C. J. Solid State Chem., 2003, 176: 18-26

[27] Locock A J, Burns P C. J. Solid State Chem., 2003, 175: 372-379

[28] Locock A J, Burns P C. J. Solid State Chem., 2004, 177: 2675-2684

[29] Alekseev E V, Krivovichev S V, Depmeier W Z. Anorg. Allg. Chem., 2007, 633: 1125-1126

[30] Yu Y, Jiang K, Albrecht-Schmitt T E. J. Solid State Chem., 2009, 182: 1867-1871

[31] Li Y P, Burns P C. J. Solid State Chem., 2002, 166: 219-228

[32] Kubatko K A H, Burns P C. Acta Cryst. Sec. C, 2004, 60: i25-i26

[33] Kubatko K A H, Burns P C. Can. Mineral., 2004, 42: 997-1003

[34] Kubatko K A H, Helean K B, Navrotsky A, Burns P C. Am. Mineral., 2005, 90: 1284-1290

[35] Burns P C. J. Nucl. Mater., 1999, 265: 218-223

[36] Burns P C, Olson R A, Finch R J, Hanchar J M, Thibault Y. J. Nucl. Mater., 2000, 278: 290-300

[37] Li Y P, Burns P C. J. Nucl. Mater., 2001, 299: 219-226

[38] Wang X Q, Huang J, Jacobson A J. J. Am. Chem. Soc., 2002, 124: 15190-15191

[39] Kubatko K A H, Burns P C. Am. Mineral., 2006, 91: 333-336

[40] Chen C S, Chiang R K, Kao H M, Li K H. Inorg. Chem., 2005, 44: 3914-3918

[41] Chen C S, Lee S F, Li K H. J. Am. Chem. Soc., 2005, 127: 12208-12209

[42] Lin C H, Chen C S, Shiryaev A A, Zubavichus Y V, Li K H. Inorg. Chem., 2008, 47: 4445-4447

[43] Lee C S, Wang S L, Chen Y H, Li K H. Inorg. Chem., 2009, 48: 8357-8361

[44] Lee C S, Wang S L, Li K H. J. Am. Chem. Soc., 2009, 131: 15116-15117

[45] Staritzky E, Cromer D T. Anal. Chem., 1956, 28: 1353-1354

[46] Jayadevan N C, Chackraburtty D M. Acta Cryst. Sec. B, 1972, 28: 3178-3182

[47] Alcock N W. J. Chem. Soc. Dalton. Trans., 1973, 1610-1613

[48] Alcock N W. J. Chem. Soc. Dalton. Trans., 1973, 1614-1616

[49] Alcock N W. J. Chem. Soc. Dalton. Trans., 1973, 1616-1620

[50] Chapelet-Araba B, Nowogrocki G, Abraham F, Grandjean S J. J. Solid State Chem., 2005, 178: 3046-3054

[51] Chapelet-Araba B, Nowogrocki G, Abraham F, Grandjean S. J. Solid State Chem., 2005, 178: 3055-3065

[52] Chapelet-Araba B, Duvieubourg L, Nowogrocki G, Abraham F. J. Solid State Chem., 2006, 179: 4029-4036

[53] Duvieubourg-Garela L, Vigier N, Abraham F, et al. J. Solid State Chem., 2008, 181: 1899-1908

[54] Jayadevan N C, Mudher K D S, Chackraburtty D M. Acta Crystallogr. Sec. B, 1975, 31: 2277-2280

[55] Szabo Z, Fischer A. Acta Cryst. Sec. E, 2002, 58: i56-i58

[56] Bradley A E, Hatter J E, Nieuwenhuyzen M, Pitner W R, Seddon K R, Thied R C. Inorg. Chem., 2002, 41: 1692-1694

[57] Duvieubourg L, Nowogrocki G, Abraham F, Grandjean S. J. Solid State Chem., 2005, 178: 3437-3444

[58] Thuéry P. Polyhedron, 2007, 26: 101-106

[59] Knope K E, Cahill C L. Inorg. Chem., 2007, 46: 6607-6612

[60] Frischa M, Cahill C L. J. Solid State Chem., 2007, 180: 2597-2602

[61] Baeva E E, Mikhailov Y N, Gorbunova Y E, Serezhkina L B, Serezhkina V N. Zh. Neorg. Khim., 2003, 48: 1801-1808

[62] Artem'eva M Y, Mikhailov Y N, Gorbunova Y E, Serezhkina L B, Serezhkina V N. Zh. Neorg. Khim., 2003, 48: 1470-1473

[63] Artemeva M Y, Mikhailov Y N, Gorbunova Y E, Serezhkina L B, Serezhkina V N. Zh. Neorg. Khim., 2003, 48: 1473-1476

[64] Shchelokov R N, Artemeva M Y, Beirakhov A G, Orlova I M, Ashurov Z R. Zh. Neorg. Khim., 1986, 31: 2339-2344

[65] Artemeva M Y, Vologzhanina A V, Dolgushin F M, Antipin M Y, Serezhkina L B, Serezhkina V N. Zh. Neorg. Khim., 2004, 49: 2068-2073

[66] Mikhailov Y N, Gorbunova Y E, Shishkina O V, Serezhkina L B, Serezhkina V N. Zh. Neorg. Khim., 1999, 44: 1448-1453

[67] Artemeva M Y, Mikhailov Y N, Gorbunova Y E, Serezhkina L B, Serezhkin V N. Zh. Neorg. Khim., 2002, 47: 936-939

[68] Burns P C, Miller M L, Ewing R C. Can. Mineral., 1996, 34: 845-880

[69] Burns P C, Ewing R C, Hawthorne F C. Can. Mineral., 1997, 35: 155l-1570

[70] Burns P C. Can. Mineral., 2005, 43: 1839-1894

[71] Kubatko K A H, Helean K B, Navrotsky A, Burns P C. Science, 2003, 302: 1191-1193

[72] Burns P C, Ling J, Forbes T, Sigmon G E, Unruh D. Formation and Structures of Uranyl Peroxide Nanoclusters. International Workshop on Radionuclide Migration and Waste Disposal, Peking University, Beijing, Oct. 12-16, 2008

[73] Burns P C., Kubatko K A, Sigmon G, Fryer B J, Gagnon J E, Antonio M R, Soderholm L. Angew. Chem. Int. Ed., 2005, 44: 2135-2139

[74] Forbes T Z, McAlpin J G, Murphy R, Burns P C. Angew. Chem. Int. Ed., 2008, 47: 2824-2827

[75] Sigmon G E, Ling J, Unruh D K, Moore-Shay L, Ward M, Weaver B, Burns P C. J. Am. Chem. Soc., 2009, 131: 16648-16649

[76] Sigmon G E, Unruh D K, Ling J, Weaver B, Ward M, Pressprich L, Simonetti A, Burns P C. Angew. Chem. Int. Ed., 2009, 48: 2737-2740

[77] Yu Z T, Li G H, Jiang Y S, Xu J J, Chen J S. Dalton Trans., 2003, 22: 4219-4220

[78] Chen W, Yuan H M, Wang J Y, Liu Z Y, Xu J J, Yang M, Chen J S. J. Am. Chem. Soc., 2003, 125: 9266-9267

[79] Yu Z T, Liao Z L, Jiang Y S, Li G H, Li G D, Chen J S. Chem. Commun., 2004, 1814-1815

[80] Yu Z T, Liao Z L, Jiang Y S, Li G H, Li G D, Chen J S. Chem. Eur. J., 2005, 11: 2642-2650

[81] Liao Z L, Li G D, Bi M H, Chen J S. Inorg. Chem., 2008, 47: 4844-4853

[82] Szabó Z, Aas W, Grenthe I. Inorg. Chem., 1997, 36: 5369-5375

[83] Szabó Z, Grenthe I. Inorg. Chem., 1998, 37: 6214-6221

[84] Farkas I, Bányai I, Szabó Z, Wahlgren U, Grenthe I. Inorg. Chem., 2000, 39: 799-805

[85] Vallet V, Moll H, Wahlgren U, Szabó Z, Grenthe I. Inorg. Chem., 2003, 42: 1982-1993

[86] Real F, Vallet V, Wahlgren U, Grenthe I. J. Am. Chem. Soc., 2008, 130: 11742-11751

[87] Whlin P, Vallet V, Wahlgren U, Grenthe I. Inorg. Chem., 2009, 48: 11310-11313

[88] Thuéry P. Cryst. Growth Des., 2008, 8: 4132-4143

[89] Thuéry P. Cryst. Growth Des., 2009, 9: 1208-1215

[90] Thuéry P. Inorg. Chem. 2009, 48: 825-827

[91] Thuéry P. CrystEngComm, 2009, 11: 1150-1156

[92] Thuéry P. Inorg. Chem. 2009, 48: 4497-4513

[93] Krivovichev S V, Burns P C. J. Solid State Chem., 2002, 168: 245-258

[94] Krivovichev S V, Burns P C. Can. Mineral., 2003, 41: 707-719

[95] Krivovichev S V, Burns P C. J. Solid State Chem., 2003, 170: 106-117

[96] Krivovichev S V, Cahill C L, Nazarchuk E V, Burns P C, Armbruster T, Depmeier W. Micropor. Mesopor. Mater., 2005, 78: 209-215

[97] Krivovichev S V, Burns P C, Armbruster T, Nazarchuk E V, Depmeier W. Micropor. Mesopor. Mater., 2005, 78: 217-224

[98] Alekseev E V, Krivovichev S V, Armbruster T, Depmeier W, Suleimanov E V, Chuprunov E V, Golubev A V. Z. Anorg. Allg. Chem., 2007, 633: 1979-1984

[99] Sykora R E, Albrecht-Schmitt T E. Inorg. Chem., 2003, 42: 2179-2181

[100] Sykora R E, Bean A C, Scott B L, Runde W, Albrecht-Schmitt T E. J. Solid State Chem., 2004, 177: 725-730

[101] Shvareva T Y, Almond P M, Albrecht-Schmitt T E. J. Solid State Chem., 2005, 178: 499-504

[102] Bray T H, Beitz J V, Bean A C, Yu Y Q, Albrecht-Schmitt T E. Inorg. Chem., 2006, 45: 8251-8257

[103] Ling J, Albrecht-Schmitt T E. Inorg. Chem., 2007, 46: 346-347

[104] Cahill C L, Borkowski L A. in Structural Chemistry of Inorganic Actinide Compounds (Eds. Krivovichev S V, Burns P C, Tananaev I G). Amsterdam: Elsevier, 2007. 409-442

[105] Vlaisavljevich B, Gagliardi L, Burns P C. J. Am. Chem. Soc., 2010, 132: 14503-14508

[106] Ling J, Wallace C M, Szymanowski J E S, Burns P C. Angew. Chem. Int. Ed., 2010, 49: 1-5

[107] Ling J, Qiu J, Sigmon G E, Ward M, Szymanowski J E S, Burns P C. J. Am. Chem. Soc., 2010, 132: 13395-13402

[108] 王祥云(Wang X Y), 刘元方(Liu Y F). 核化学与放射化学(Nuclear Chemistry and Radiochemistry). 北京: 北京大学出版社(Beijing: Peking University Press), 2007. 302-303

[1] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[2] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[3] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[4] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[7] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[8] 王晓方, 胡殷, 潘启发, 杨瑞龙, 龙重, 刘柯钊. 铀氮化物晶体结构及电子结构[J]. 化学进展, 2018, 30(12): 1803-1818.
[9] 杨世迎, 张翱, 任腾飞, 张宜涛. 炭基材料催化过氧化物降解水中有机污染物:表面作用机制[J]. 化学进展, 2017, 29(5): 539-552.
[10] 鲁闻生, 王海飞, 张建平, 江龙. 金纳米棒的制备、生长机理及纯化[J]. 化学进展, 2015, 27(7): 785-793.
[11] 杨峰, 梁宏*. 人血清白蛋白及其复合物的结构基础[J]. 化学进展, 2013, 25(04): 530-538.
[12] 欧阳健明*, 张广娜, 王凤新, 李君君. 草酸钙结石患者尿液中纳米微晶的成核、生长、聚集及其与结石形成的关系[J]. 化学进展, 2013, 25(04): 642-649.
[13] 沈娟*, 金波, 蒋琪英, 钟国清, 霍冀川. 磷灰石晶体构型及其与生物分子相互作用的计算模拟研究[J]. 化学进展, 2012, 24(05): 737-746.
[14] 任红, 张萍, 吴平, 芦菲. 含三唑-有机羧酸混合配体的配位聚合物[J]. 化学进展, 2012, 24(05): 769-775.
[15] 李全, 马琰铭. 高压下轻元素单质的结构相变[J]. 化学进展, 2011, 23(5): 829-841.
阅读次数
全文


摘要

铀酰配合物单晶的合成与结构