English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1355-1365 前一篇   后一篇

• 放射化学专辑 •

硅基超分子识别材料在乏燃料后处理中的研究进展

张安运1,*, 肖成梁1, 柴之芳1,2   

  1. 1. 浙江大学化学工程与生物工程学系分子工程研究室 杭州310027;
    2. 中国科学院高能物理研究所 北京 100049
  • 收稿日期:2010-12-01 修回日期:2011-03-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail:zhangay@zju.edu.cn E-mail:zhangay@zju.edu.cn
  • 基金资助:

    国家自然科学基金(No. 20671081, No. 20871103)、浙江省研究生创新科研项目(No. YK2009006)、高等学校博士学科点专项科研基金项目(No. 20070335183,20090101110043)和浙江省自然科学基金项目(No.Y4110002)资助

Development of Silica-Based Supramolecular Recognition Materials in Reprocessing of Nuclear Spent Fuel

Zhang Anyun1,*, Xiao Chengliang1, Chai Zhifang1,2   

  1. 1. Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2010-12-01 Revised:2011-03-01 Online:2011-07-24 Published:2012-03-15

新材料与新技术被认为在先进核能系统中将发挥重要作用, 其中基于超分子体系构筑的超分子识别材料是近年来受到广泛重视的新型功能材料之一, 在乏燃料后处理领域显示出了非常明确的应用前景。本文综述了大孔硅基超分子识别材料在合成与表征、发热元素Sr(Ⅱ)、Cs(I)及共存元素吸附基础特性等方面的研究进展, 分析了HNO3浓度、接触时间和修饰剂等因素对硅基超分子识别材料吸附性能的影响, 评价了从模拟酸性高放废液中分离发热元素的SPEC色谱技术流程, 同时评述了相近硅基材料的研究进展。

The new materials and new technologies are considered to play important roles in the advanced nuclear energy systems. Supramolecular recognition materials (SMRM) have received worldwide attention for several decades, and are becoming a hot research field in the spent nuclear fuel reprocessing. The research progress of the macroporous silica-based supramolecular recognition materials in spent fuel reprocessing are reviewed. The synthesis and characterization of silica-based supramolecular recognition materials and their respective adsorption properties for Cs(I)/Sr(Ⅱ) are summarized. The effects of various factors on the adsorption of the silica-based supramolecular recognition materials are evaluated. The SPEC process for strontium/cesium partitioning by extraction chromatography was discussed. It is found that the extraction chromatography processes based on the silica-based supramolecular recognition materials have following advantages: (1) high separation efficiency and excellent selectivity, (2) a minimal organic solvent utilization and less waste accumulation, (3) compacted equipment and simple operation, and (4) a real “salt-free” treatment, etc.

Contents
1 Introduction
2 Synthesis and characterization
2.1 Synthesis of silica-based SiO2-P support
2.2 Synthesis of silica-based supramolecular recognition materials
2.3 Characterization of silica-based supramolecular recognition materials
3 Development of silica-based materials in spent nuclear fuel reprocessing
3.1 Crown ether/SiO2-P
3.2 Calix[4]arene-crown-6/SiO2-P
3.3 Silica-basedsynergistic supramolecular recogni-tion materials
3.4 Other silica-based materials
4 Conclusions and outlooks

中图分类号: 

()


[1] Madic C. Overview of the Hydrome, tallurgical and Pyrometallurgical Processes Studied World-Wide for the Partitioning of High Active Nuclear Wastes. JAERI Conf., 2002-004, 27-37

[2] Dozol J F, Simon N, Lamare V, Rouquette H, Eymard S, Tournois B. Sep. Sci. Technol., 1999, 34: 877-909

[3] Tiwari D, Prasad S K, Yang J K, Choi B J, Lee S M. Environ. Eng. Res., 2006, 11: 106-125

[4] Simon N, Eymard S, Tournois B, Dozol J F. Caesium Extraction from Acidic High Level Liquid Waste with Functionalized Calixarenes. ATALANTE 2000, Avinon, France

[5] Walker D D, Norato M A, Campbell S G, Crowder M L, Fink S D, Fondeur F F, Geeting M W, Kessinger G F, Pierce R A. Sep. Sci. Technol., 2005, 40: 297-309

[6] Horwitz E P, Dietz M L, Fisher D E. Solvent Extr. Ion Exch., 1991, 9: 1-25

[7] Riddle C L, Baker J D, Law J D, McGrath C A, Meikrantz D H. Solvent Extr. Ion Exch., 2005, 23: 449-461

[8] 张安运(Zhang A Y), 柴之芳(Chai Z F). 先进核能化学中的新型多孔材料(Novel Macroporous Materials in Advanced Nuclear Energy Chemistry). 第15届全国分子筛学术大会(15th Chinese Zeolite Conference), 洛阳(Luoyang), 2010

[9] Zhang A Y, Wei Y Z, Kumagai, M. React. Funct. Polym., 2004, 61: 191-202

[10] Zhang A Y, Xiao C L, Hu Q H, Chai Z F. Solvent Extr. Ion Exch., 2010, 28: 526-542

[11] Zhang A Y, Hu Q H, Chai Z F. Sep. Sci. Technol., 2009, 44: 2146-2168

[12] Zhang A Y, Xiao C L, Liu Y H, Hu Q H, Chen C M, Kuraoka E. J. Porous Mater., 2010, 17: 153-161

[13] 肖成梁(Xiao C L). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2011

[14] Zhang A Y, Kuraoka E, Kumagai M. J. Chromatogr. A, 2007, 1157: 85-95

[15] Zhang A Y, Chen C M, Chai Z F, Kumagai M. Ads. Sci. Technol., 2008, 26: 705-720

[16] Zhang A Y, Xiao C L, Kuraoka E, Kumagai M. Ind. Eng. Chem. Res., 2007, 46: 2164-2171

[17] Zhang A Y, Xiao C L, Kuraoka E, Kumagai M. J. Hazard. Mater., 2007, 147: 601-609

[18] Zhang A Y, Chen C M, Wang W H, Wei Y Z. Solvent Extr. Ion Exch., 2008, 26: 624- 642

[19] Zhang A Y, Wang W H, Chai Z F, Kumagai M. J. Sep. Sci., 2008, 31: 3148-3155

[20] Zhang A Y, Xiao C L, Chai Z F. J. Radioanal. Nucl. Chem. 2009, 280: 181-191

[21] Zhang A Y, Wang W H, Chai Z F, Kuraoka E. Eur. Poly. J., 2008, 44: 3899-3907

[22] Zhang A Y, Chen C M, Kuraoka E, Kumagai, M. Sep. Purif. Technol., 2008, 62: 407-414

[23] Glennon J D, Horne E, Hall K, Cocker D, Kuhn A, Harris S J, McKervey M A. J. Chromatogr. A, 1996, 731: 47-55

[24] Arena G, Casnati A, Contino A, Mirone L, Sciotto D, Ungaro R. Chem. Commun., 1996, 19: 2277-2278

[25] Arena G, Contino A, Longo E, Sciotto D, Spoto G, Torrisi A. J. Supramol. Chem., 2002, 2: 521-531.

[26] Tavlarides L L, Lee J S, Nam K H, Agarwal N. Tsinghua Sci. Technol., 2006, 11: 233-240

[27] Zhang A Y, Wei Y Z, Hoshi H, Yoshikazu K. Solvent Extr. Ion Exch., 2007, 25: 389-405

[28] Zhang A Y, Xiao C L, Xue W J, Chai Z F. Sep. Purif. Technol., 2009, 66: 541-548

[29] Zhang A Y, Hu Q H, Chai Z F. AIChE J., 2010, 56: 2632-2640

[30] Zhang A Y, Hu Q H, Chai Z F. Ind. Eng. Chem. Res., 2010, 49: 2047-2054

[31] Zhang A Y, Hu Q H. Chem. Eng. J., 2010, 159: 58-66

[32] Xiao C L, Zhang A Y, Chai Z F. Solvent Extr. Ion Exch., 2011, 29(5), in press

[33] 张安运(Zhang A Y). CN 100460057C, 2009

[34] Zhang A Y, Kuraoka E, Kumagai M, Koma Y, Koyama T. J. Radioanal. Nucl. Chem., 2006, 269: 119-128

[35] Wei Y Z, Zhang A Y, Kumagai M, Watanabe M, Hayashi N. J. Nucl. Sci. Technol., 2004, 41: 315-322

[36] Zhang A Y, Hu Q H, Wang W H, Kuraoka E. Ind. Eng. Chem. Res., 2008, 47: 6158-6165

[37] Zhang A Y, Wei Y Z, Hoshi H, Kumagai M. Solvent Extr. Ion Exch., 2005, 23: 231-247

[38] Zhang A Y, Wei Y Z, Hoshi H, Kumagai M, Koma Y. Adsorpt. Sci. Technol., 2005, 23: 721-737

[39] Zhang A Y, Wei Y Z, Kumagai M. J. Radioanal. Nucl. Chem., 2005, 265: 409-417

[40] Zhang A Y, Etsusyo K, Hoshi H, Kumagai M. J. Chromatogr. A, 2004, 1061: 175-182

[41] Zhang A Y, Wei Y Z, Kumagai M, Koma Y, Koyama T. Radiat. Phy. Chem., 2005, 72: 455-463

[42] Zhang A Y, Wei Y Z, Kumagai M, Koma Y. J. Alloy Compd., 2005, 390: 275-281

[43] Zhang A Y, Kuraoka E, Kumagai M. Sep. Purif. Technol., 2007, 54: 363-372

[44] Zhang A Y, Kuraoka E, Kumagai M. J. Chromatogr. A, 2007, 1157: 85-95

[45] Zhang A Y, Wei Y Z, Kumagai M. Sep. Sci. Technol., 2007, 42: 2235-2253

[46] Zhang A Y, Chen C M, Wei Y Z, Kumagai M. Adsorpt. Sci. Technol., 2007, 25: 257-272

[47] Zhang A Y, Kuraoka E, Kumagai M. Sep. Purif. Technol., 2006, 50: 35-44

[48] Zhang A Y, Wei Y Z, Hoshi H, Kumagai M. Sep. Sci. Technol., 2005, 40: 811-827

[49] Zhang A Y, Wei Y Z, Hoshi H, Kumagai M, Kamiya M, Koyama T. Radiat. Phy. Chem., 2005, 72: 669-678

[50] Kolarik Z, Mullich U, Gassner F. Solvent Extr. Ion Exch., 1999, 17: 1155-1170

[51] Hill C, Guilianeux D, Berthon L, Madic C. SANEX-BTP Process Development Studies. JAERI-Conf., 2002-004, 573-578

[52] Magnusson D, Christiasen B, Forman M R S, Geist A, Glatz J P, Malmbeck R, Modolo G, Serrano-Purroy D, Sorel C. Solvent Extr. Ion Exch., 2009, 27: 97-106

[53] Zhang A Y, Kuraoka E, Kumagai M. J. Radioanal. Nucl. Chem., 2007, 274: 455-464

[54] Wei Y Z, Hoshi H, Kumagai M, Asakura T, Morita Y. J. Alloy Compd., 2004, 374: 447-450

[55] Hoshi H, Wei Y Z, Kumagai M, Asakura T, Morita Y. J. Alloy Compd., 2006, 408/412: 1274-1277

[56] Zhang A Y, Wang X Y, Chai Z F. AIChE J., 2010, 56: 3074-3083

[57] Zhang A Y, Zhu Y P, Liu Y H, Chai Z F. Ind. Eng. Chem. Res., 2011, 50, in press

[1] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.
[2] 韦悦周. 国外核燃料后处理化学分离技术的研究进展及考察[J]. 化学进展, 2011, 23(7): 1272-1288.
[3] 朱礼洋, 文明芬, 段五华, 徐景明, 朱永(贝睿). 超临界流体萃取技术在乏燃料后处理中的应用[J]. 化学进展, 2011, 23(7): 1308-1315.
[4] 陈靖, 王建晨. 从高放废液中去除锕系元素的TRPO 流程发展三十年[J]. 化学进展, 2011, 23(7): 1366-1371.
[5] 崔大庆. 综述KBS-3处置库近场还原性环境对处置安全的裨益[J]. 化学进展, 2011, 23(7): 1411-1428.
[6] 袁立永, 彭静, 翟茂林. 咪唑离子液体及其萃取体系的辐射效应研究[J]. 化学进展, 2011, 23(7): 1469-1477.