English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1338-1344 前一篇   后一篇

• 放射化学专辑 •

二烃基二硫代膦酸萃取分离三价锕系与镧系元素研究

陈靖*, 王芳, 何喜红, 盘登芳   

  1. 清华大学核能与新能源技术研究院 北京 100084
  • 收稿日期:2011-03-01 修回日期:2011-04-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail:jingxia@tsinghua.edu.cn E-mail:jingxia@tsinghua.edu.cn

Studies on Separating Trivalent Actinides from Lanthanides by Dialkyldithiophosphinic Acid Extraction

Chen Jing*, Wang Fang, He Xihong, Pan Dengfang   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2011-03-01 Revised:2011-04-01 Online:2011-07-24 Published:2012-03-15

三价锕系与镧系元素的有效分离是实现“分离-嬗变”先进燃料循环的关键环节之一。然而,由于三价锕系与镧系元素的物理化学性质极为接近,其有效分离一直是分离领域的难题之一。在溶剂萃取分离法中,含S、N等软配体的萃取剂表现出良好的分离性能。1995年,商业试剂Cyanex 301被发现能够从常量镧系元素中有效分离三价锕系元素,随后发现其纯化产品二(2,4,4-三甲基戊基)二硫代膦酸对示踪量和常量的镧系元素中的三价锕系都具有非常好的萃取分离效果,并提出了分离工艺,进行了热实验验证。机理研究结果表明,二(2,4,4-三甲基戊基)二硫代膦与三价锕系或镧系元素形成的配合物中以八配位的立方体为主。烃基换成苯基或氯苯等基团之后,没有分离效果,但在磷酸三烃基酯等中性萃取剂协萃条件下,具有一定的分离效果。最近发现烃基换成o-三氟甲基苯基后,可以获得非常好的分离效果。虽然二烃基二硫代膦酸的稳定性还期望进一步提高,对其萃取分离机理的认识还有待深入,但是由于其卓越的分离性能,在三价锕系与镧系元素分离应用中具有良好的应用前景。

The effective separation of trivalent actinides from lanthanides is one of key steps to realizing the advanced nuclear fuel cycle based on “partitioning-transmutation”. However, their effective separation is always one of difficulties in the separation field because of the very similar physical and chemical properties between trivalent actinides and lanthanides. In the separation by solvent extraction, ligands containing soft donor S, N show good performance to separate trivalent actinides from lanthanides. In 1995, Cyanex 301, a commercial reagent, was found to be able to separate trivalent actinides from macro amount of lanthanides, and then the purified product bis(2,4,4-trimethylpentyl)dithiophosphinic acid was proven to have remarkable ability to separate actinides from both micro and macro amount of lanthanides. The separation process was studied and demonstrated by hot test. The dominant complex in extraction is of cubic structure with a coordination number of 8. The phenyl, chlorophenyl-substituted compounds had no separation ability, but achieved a good separation performance with the synergistic extraction of neutral extractants such as trialkylphosphate. Recently, o-trifluoromethylphenyl- substituted extractant compound was proven to have an excellent separation performance. Although the improvement in stability is desired and the further investigation to the separation mechanism is needed, dialkyldithiophosphinic acids are promising reagents for trivalent actinides/lanthanides separation because of the outstanding separation performance.

Contents
1 Introduction
2 Separation of trivalent actinides from lanthanides
3 Separation of trivalent actinides from lanthanides by Cyanex 301 extraction
4 Separation of trivalent actinides from lanthanides by dialkyldithiophosphinic acids extraction
5 Future of dialkyldithiophosphinic acid-based separation technology

中图分类号: 

()


[1] Croff A C, Blomeke J O. Actinide Partitioning-Transmutation Program, Final Report, ORNL 5566 (1980)

[2] Zhu Y J. An Extractant (TRPO) for the Removal and Recovery of Actinides from High Level Radioactive Liquid Waste. ISEC’83, p9, Denver, Colorado, USA, 1983

[3] Glatz J P, Song C L, Koch L. Bokelund H, He X M. Hot Tests of the TRPO Process for the Removal of TRU Elements From HLLW, Proceedings of the Global’95 Conference, Versailles, France, 1995, Vol. 1, 548-555

[4] Cuillerdier C, Musikas C, Hoel P. Sep. Sci. Technol., 1991, 26: 1229-1244

[5] Horwitz E P, Schulz W W. The TRUEX Process: A Vital Tool for Disposal of U. S. Defense Nuclear Waste. In: New Separation Chemistry Techniques for Radioactive Waste and Other Specific Application (eds. Cecille L, Casarci M, Pietrelli L). London: Elsevier, 1991. 21-34

[6] Vandegrift G F, Regalbuto M C, Aase S B, Arafat H A. Lab-scale Demonstration of the UREX+ Process. Waste Management Conference (WM’04), February 29, -March 4, 2004. Tucson, Arizona, USA. Paper No 4323

[7] Proctor S G. Rare Earth Removal from Americium Oxide. US 3723594

[8] Hulet E K, Gutmacher R G, Coops M S. J. Inorg. Nucl. Chem., 1961, 17: 350-354

[9] Nash K L. Solv. Extr. Ion. Exch., 1993, 11(4): 729-768

[10] Choppin G R. J. Less-common. Metals, 1983, 93: 323-330

[11] Weaver B, Kappelmann F A. Talspeak, A New Method of Separating Americium and Curium from the Lanthanides by Extraction from an Aqueous Solution of an Aminopolyacetic Acid Complex with a Monoacetic Organophosphate or Phosphonate. August 1964, ORNL-3559

[12] Liljenzin J O, Persson G, Svantesson I, Wingefors S. Radiochim. Acta, 1984, 35: 155-162

[13] Grimes T S, Nilsson M, Nash K L. The Behavior and Importance of Lactic Acid Complexation in TALSPEAK Extraction Systems. Proceeding of international solvent extraction conference, ISEC 2008, Tucson, Arizona, USA. Sep. 15-19, 2008.p563-568

[14] Nilsson M, Nash K L. Solv. Extr. Ion. Exch., 2009, 27(3): 354-377

[15] Leggetta C J, Liu G K, Jensen M P. Solv. Extr. Ion. Exch., 2010, 28(3): 313-334

[16] Hill C, Guillaneux D, Berthon L, Madic C. J. Nucl. Sci. Technol., 2002, S3: 309-312

[17] Foreman M R S J, Hudson M J, Geist A, Madic C, Weigl M. Solv. Extr. Ion. Exch., 2005, 23(5): 645-662

[18] Nilsson M, Ekberg C, Foreman M, Hudson M, Liljenzin J O, Modolo G. Solv. Extr. Ion. Exch., 2006, 24(6): 823-843

[19] Retegan T, Ekberg C, Dubois I, Fermvik A, Skarnemark G, Wass T J. Solv. Extr. Ion. Exch., 2007, 25(4): 417-431

[20] Zhu Y J. Radiochim. Acta, 1995, 68(2): 95-98

[21] Zhu Y J, Chen J, Jiao R Z. Solv. Extr. Ion. Exch., 1996, 14(1): 61-68

[22] 陈靖(Chen J), 焦荣洲(Jiao R Z), 朱永 NFDB2 (Zhu Y J). 应用化学(Chinese Journal of Applied Chemistry), 1996, 13(2): 45-48

[23] Sole K C, Hiskey J B, Ferguson T L. Solv. Extr. Ion. Exch., 1993, 11(5): 783-796

[24] Chen J, Jiao R Z, Zhu Y J. Solv. Extr. Ion. Exch., 1996, 14(4): 555-565

[25] Chen J, Veltkamp A C, Booij A S. J. Radioanal. Nucl. Chem., 2002, 253(1): 31-34

[26] 彭燕斌(Peng Y B), 陈靖(Chen J). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2006, 28(3): 178-182

[27] Zhu Y J, Xu J M, Chen J, Chen Y Z. J. Alloys Comp., 1998, 271/273: 742-745

[28] 陈靖 (Chen J), 朱永jun (Zhu Y J), 焦荣洲 (Jiao R Z). 清华大学学报(自然科学版)(Journal of Tsinghua University (Science and Technetogy), 1998, 38(4): 1-4

[29] 田国新(Tian G X), 清华大学博士论文 (Doctoral Dissertation of Tsinghua University), 2001

[30] Jensen M P, Bond A H, Rickert P G, Nash K L. J. Nucl. Sci. Technol., 2002, S3: 255-258

[31] Tian G X, Zhu Y J, Xu J M, Zhang P, Hu T D, Xie Y N, Zhang J. Inorg. Chem., 2003, 42(3): 735-741

[32] Cao X Y, Heidelberg D, Ciupka J, Dolg M. Inorg. Chem., 2010, 49: 10307-10315

[33] 陈靖(Chen J), 清华大学博士论文 (Doctoral Dissertation of Tsinghua University), 1996

[34] Chen J, Zhu Y J, Jiao R Z. Sep. Sci. Technol., 1996, 31(19): 2723-2731

[35] Chen J, Jiao R Z, Zhu Y J. Radiochimi. Acta, 1997, 76: 129-130

[36] Chen J, Tian G X, Jiao R Z, Zhu Y J. J. Nucl. Sci. Technol., 2002, S3: 325-327

[37] Peterman D R, Law J D, Todd T A, Tillotson R D. Use of Cyanex-301 for Separation of Am/Cm from Lanthanides in an Advanced Nuclear Fuel Cycle. ACS Symposium Series (2006), 933

[38] Law J D, Peterman D R, Todd T A, Tillotson R D. Radiochimi. Acta, 2006, 94(5): 261-266

[39] Modolo G, Odoj R. Solv. Extr. Ion. Exch., 1999, 17(1): 33-53

[40] Modolo G, Odoj R. J. Alloys. Comp., 1998, 271/273: 248-251

[41] 许启初 (Xu Q C), 裴承新(Pei C X), 王世联(Wang S L), 金玉仁(Jin Y R), 张利兴(Zhang L X), 杨裕生 (Yang Y S). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2000, 22(4): 243-247

[42] 田国新 (Tain G X), 朱永 NFDB2 (Zhu Y J), 徐景明(Xu J M). 原子能科学技术(Atomic Energy Science and Technology), 2001, 35(S): 76-82

[43] Sherif Abdel H. H. N. Highly Selective Extraction System Based on Dithiophosphinic Acid: Experimental and the theoretical analysis of actinoide (Ⅲ)-separation. Schriften des Forschungszentrums Juelich, Germany. Reihe Energietechnik/Energy Technology, 2004, 29, 198

[44] Klaehn J R, Peterman D R, Harrup M K, Tillotson R D, Luther T A, Law J D, Daniels L M. Inorg. Chimi. Acta, 2008, 361: 2522-2532

[45] 王红敏 (Wang H M), 贾彩 (Jia C), 文明芬(Wen M F), 李保山 (Li B S), 陈靖 (Chen J). 核化学与放射化学(Journal of Nuclear and Raoliochemistry), 2010, 32(5): 280-282

[46] Jia C, Yu F X, Wang F, Wu W S, Chen J. Synthetic Communications, 2010, 40(14): 2036-2041

[47] Modolo G, Nabet S. Solv. Extr. Ion. Exch., 2005, 23(3): 359-373

[48] Ionova G, Ionov S, Rabbe C, Hill C, Madic C, Guillaumont R, Modolo G, Krupad J C. New J. Chem., 2001, 25: 491-501

[49] Peterman D R, Greenhalgh M R, Tillotson R D, Klaehn J R, Harrup M K, Luther T A, Law J D, Daniels L M. Separation of Minor Actinides from Lanthanides by Dithiophosphinic Acid Extractants. International Solvent Extraction Conference, ISEC2008, Tucson, Arizona, USA. Sep. 15-19, 2008. p1427-1432

[1] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.
[2] 杨良嵘, 邢慧芳, 屈虹男, 于杰淼, 刘会洲. 外场强化环境响应固相萃取技术[J]. 化学进展, 2019, 31(11): 1615-1622.
[3] 池晓汪, 吴群燕, 于吉攀, 张覃, 柴之芳, 石伟群. 锕系异核双金属化合物[J]. 化学进展, 2019, 31(10): 1341-1349.
[4] 吴宇轩, 刘宁, 丁颂东. 用于锕系分离和三价镧系/锕系分离的水溶性配体[J]. 化学进展, 2014, 26(10): 1655-1664.
[5] 盘登芳, 叶钢, 王芳, 陈靖* . 含氮杂环化合物萃取分离三价锕系与镧系元素[J]. 化学进展, 2012, 24(11): 2167-2176.
[6] 叶国安, 张虎. 核燃料后处理技术发展及其放射化学问题[J]. 化学进展, 2011, 23(7): 1289-1294.
[7] 饶林峰. 热力学和光谱学方法在锕系元素络合化学研究中的应用[J]. 化学进展, 2011, 23(7): 1295-1307.
[8] 苏静, 李隽. 锕系化合物荧光光谱理论研究进展[J]. 化学进展, 2011, 23(7): 1329-1337.
[9] 羊衍秋, 罗顺忠, 杨通在, 郝樊华. 杯芳烃衍生物萃取剂分离An(Ⅲ)/Ln(Ⅲ)[J]. 化学进展, 2011, 23(7): 1345-1354.
[10] 陈靖, 王建晨. 从高放废液中去除锕系元素的TRPO 流程发展三十年[J]. 化学进展, 2011, 23(7): 1366-1371.
[11] 王东琪, Wilfred F. van Gunsteren. 锕系计算化学进展[J]. 化学进展, 2011, 23(7): 1566-1581.
[12] 张旭红 王淑萍. 3d-4f单分子磁体*[J]. 化学进展, 2010, 22(09): 1709-1719.