
锕系化合物荧光光谱理论研究进展
Theoretical Studies on Fluorescence Spectra of Actinide Complexes
本文对锕系化合物荧光光谱的实验研究进行了系统总结,并在此基础上重点介绍了锕酰(actinyl)化合物的电子结构以及荧光光谱模拟的原理。结合我们关于铀酰-甘氨酸水合物结构、稳定性和荧光光谱模拟的研究工作,本文对锕系化合物荧光光谱理论研究的现状、理论方法和计算结果进行了综述。铀酰配合物中O—U—O单元的对称伸缩振动决定了其荧光特征,通过理论研究,结合计算化学模拟,可以解释铀酰-甘氨酸水溶液中振动分辨的实验光谱图,并阐明热带(hot band)峰强度异常高的成因。上述研究结果表明,现代计算化学和实验技术相结合,能够用于深入地分析锕系化合物的结构、光谱和性质,包括溶剂配位层、生物配体的配位结构、热力学和能量和荧光光谱等。
In this mini-review, we have briefly summarized the experimental research on fluorescence spectra of actinide complexes, the electronic structures of actinyl complexes, and the basic principle for computational simulations of fluorescence spectra.Although numerous fluorescence spectroscopy data had been available experimentally, there were no theoretical investigations on vibrationally resolved fluorescence spectra of actinide complexes. Recently we have performed for the first time computational modeling of vibrationally resolved fluorescence spectra of uranyl complexes using Heller’s time-dependent theory for electronic spectroscopy. Herein reviewed are the theoretical results from computational chemistry modeling on the coordination structures, stabilization energies and fluorescence properties of uranyl-glycine-water complexes. Our research has shown that the vibrationally resolved electronic spectra and the unusually high intensity of the illustrious uranyl hot-band can be interpreted by combining state-of-the-art computational chemistry and contemporary experimental techniques. This integrated theory and experiment approach can lead to a detailed understanding of the geometries, energetics, and luminescence properties of actinide compounds, including those with bio-ligands.
Contents
1 Introduction
1.1 Actinide speciation
1.2 Fluorescence of actinide compounds
1.3 Theoretical studies of electronic spectra of actinides
2 Electronic structure of actinyl ions
3 Principles of fluorescence spectroscopy simulation
4 Computational study of uranyl-glycine-water complexes
4.1 Structure and stability
4.2 Thermodynamic properties
4.3 Fluorescence spectra simulation
5 Conclusions and outlook
锕系化合物 / 荧光光谱 / 电子结构 / 激发态 / 铀酰-甘氨酸水合物 {{custom_keyword}} /
actinide / fluorescence spectroscopy / electronic structure / excited state / uranyl-glycine-water complexes {{custom_keyword}} /
[1] 王驹(Wang J). 中国核工业(China Nuclear Industry), 2008, 6: 16-19
[2] 刘春立(Liu C L). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31: 45-52
[3] Denecke M A. Coord. Chem. Rev., 2006, 250: 730-754
[4] 刘期凤(Liu Q F), 刘宁(Liu N), 廖家莉(Liao J L), 金建南(Jin J N). 化学研究与应用(Chemical Research and Application), 2006, 18(5): 465-471
[5] Szabó Z, Toraishi T, Vallet V, Grenthe I. Coord. Chem. Rev., 2006, 250: 784-815
[6] Geipel G. Coord. Chem. Rev., 2006, 250: 844-854
[7] Gibson J K, Marcalo J. Coord. Chem. Rev., 2006, 250: 776-783
[8] May C C, Worsfold P J, Keith-Roach M J. Trends in Analytical Chemistry, 2008, 27: 160-168
[9] Moulin C, Decambox P, Mauchien P. J. Radioanal. Nucl. Chem., 1997, 226: 135-138
[10] Billard I, Geipel G. Springer Ser Fluoresc, 2008, 5: 465-492
[11] Kimura T, Kato Y. J. Alloys. Comp., 1998, 271/273: 867-871
[12] Rabinowitch E, Belford R L. Spectroscopy and Photoechemisty of Uranyl Compounds. Oxford University Press, Oxford GB, 1964
[13] Bell J T, Biggers R E. J. Mol. Spectr., 1965, 18: 247-275
[14] Bell J T, Biggers R E. J. Mol. Spectr., 1968, 25: 312-329
[15] Eliet V, Bidoglio G, Omenetto N, Parma L, Grenthe I. J. Chem. Soc. Faraday. Trans., 1995,91: 2275-2285
[16] Kirishima A, Kimura T, Tochiyama O, Yoshida Z. Radiochim. Acta, 2004, 92: 889-896
[17] Karbowiak M, Hubert S, Fourest B, Moulin C. Radiochim. Acta, 2004, 9 2: 489-494
[18] Rutsch M, Geipel G, Brendler V, Bernhard G, Nitsche H. Radiochim. Acta, 1999, 86: 135-141
[19] Brachmann A, Geipel G, Bernhard G, Nitsche H Radiochim. Acta, 2002, 90: 147-149
[20] Koban A, Geipel G, Roβerg A, Bernhard G. Radiochim. Acta, 2004, 92: 903-908
[21] Günther A, Geipel G, Bernhard G. Polyhedron, 2007, 26: 59-65
[22] Günther A, Geipel G, Bernhard G. Radiochim. Acta, 2006, 94: 845-851
[23] Gtz C, Geipel G, Bernhard G. J. Radioanal. Nucl. Chem., 2011, 287: 961-969
[24] Wang Z, Zachara J M, Yantasee W,Gassman P L, Liu C, Joly A G. Environ. Sci. Technol., 2004, 38: 5591-5597
[25] Cao X, Dolg M. Coord. Chem. Rev., 2006, 250: 900-910
[26] Kaltsoyannis N. Chem. Soc. Rev., 2003, 32: 9-16
[27] Vallet V, Macak P, Wahlgren U, Grenthe I. Theor. Chem. Acc., 2006, 115: 145-16
[28] Zhang Z, Pitzer R M. J. Phys. Chem. A, 1999, 103: 6880-6886
[29] Matsika S, Pitzer R M. J. Phys. Chem. A, 2001, 105: 637-645
[30] Matsika S, Pitzer R M. J. Phys. Chem. A, 2000, 104: 4064-4068
[31] Matsika S, Pitzer R M. J. Phys. Chem. A, 2000,104: 11983-11992
[32] Wang Q, Pitzer R M. J. Phys. Chem. A, 2001, 105: 8370-8375
[33] Ruipérez F, Danilo C, Réal F, Flament J-P, Vallet V. J. Phys. Chem. A, 2009, 113: 1420-1428
[34] Hay P J, Martin R L, Schreckenbach G. J. Phys. Chem. A, 2000, 104: 6259-6270
[35] Infante I, Gomes A S P, Visscher L. J. Chem. Phys., 2006, 125: art. no. 074301
[36] Li J, Bursten B E. J. Am. Chem. Soc., 1998, 120: 11456-11466
[37] Kaltsoyannis N, Bursten B E. J. Organomet. Chem., 1997, 528: 19-33
[38] 肖海 (Xiao H), 李隽(Li J). 结构化学(Chin. J. Struct. Chem. ), 2008, 27: 967-974
[39] 胡憾石(Hu H S),吴国是(Wu G S),李隽(Li J). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31: 25-34
[40] Lyon J T, Hu H S, Andrews L, Li J. Proc. Nat. Acad. Sci. USA, 2007, 104: 18919-18924
[41] Li J, Hu H S, Lyon J T, Andrews L. Angew. Chem. Int. Ed., 2007, 46: 9045-9049
[42] Wei F, Wu G S, Schwarz W H E, Li J. Theor. Chem. Acc. 2011, 129: 467-481
[43] Wei F, Wu G S, Li J. J. Chem. Theo. Comp., 2011, in press.
[44] Su J, Li J. Abstract Book of Spectroscopic, Radioanalytical and Nuclear Methods for Security Applications, Pacifchem 2010, Hunululu, Hawaii, 2010
[45] Su J, Zhang K, Schwarz W H E, Li J. Inorg. Chem., 2011, 50: 2082-2093
[46] Dennin R G, Snellgrove T R, Woodwark D R. Mol. Phys., 1976, 32: 419-442
[47] Barker T J, Denning R G, Thorne Jonathan R G. Inorg. Chem., 1987, 26: 1721-1732
[48] Denning R G, Norris J O W,Brown D. Mol. Phy., 1982, 46: 287-323
[49] Denning R G, Norris J O W,Brown D. Mol. Phy., 1982, 46: 325-364
[50] Denning R G. J. Phys. Chem. A, 2007, 111: 4125-4143
[51] Pepper M, Bursten B E. Chem. Rev., 1991, 91: 719-741
[52] Wang Z, Zachara J M, Mckinley J P, Smith S G, Environ. Sci. Technol., 2005, 39: 2651-2659
[53] Tian G, Rao L, Teat S J, Liu G. . Chem. Eur. J., 2009, 15: 4172-4185
[54] Wilkerson M P, Berg J M, Hopkins T A, Dewey H J. J. Solid State Chem., 2005, 178: 584-588
[55] Wilkerson M P, Arrington C A, Berg J M, Scot B L. J. Alloys Comp., 2007, 444/5: 634-639
[56] Wilkerson M P, Berg J M. J. Phys. Chem. A, 2008, 112: 2515-2518
[57] Talbot-Eeckelaers C, Pope S J A, Hynes A J, Copping R, Jones C J, Taylor R J, Faulkner S, Sykes D, Livens F R, May I. J. Am. Chem. Soc., 2007, 129: 2442-2443
[58] Lee S Y, Heller E J. J. Chem. Phys., 1979, 71: 4777-4788
[59] Heller E J, Sundberg, R L, Tannor D. J. Phys. Chem., 1982, 86: 1822-1833
[60] Heller E J. Acc. Chem. Res., 1981, 14: 368-375
[61] Tannor D J, Heller E J. J. Chem. Phys., 1982, 77: 202-218
[62] Neese F, Petrenko T, Ganyushin D, Olbrich G. Coord. Chem. Rev., 2007, 251: 288-327
[63] Petrenko T, Neese F. J. Chem. Phys., 2007, 127: art. no. 164319
[64] Acosta A. Zink J I. J. Organomet. Chem., 1998, 554: 87-103
[65] Bailey S E, Eikey R A, Abu-Omar M M, Zink J I. Inorg. Chem., 2002, 41: 1755-1760
[66] Huang K, Rhys A. Proc. R. Soc. Lond., 1950, 204A: 406-423
[67] Heller E J. J. Chem. Phys., 1975, 62: 1544-1556
[68] Fonger W H, Struck C W. J. Chem. Phys., 1974, 60: 1994-2002
[69] ADF 2007. 01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam (http: //www. scm. com)
[70] Fonseca Guerra C, Snijders J G, te Velde G, Baerends E J. Theor. Chem. Acc., 1998, 99: 391-403
[71] te Velde G, Bickelhaupt F M, van Gisbergen S J A, Fonseca Guerra C, Baerends E J, Snijders J G, Ziegler T. J. Comp. Chem., 2001, 22: 931-967
[72] de Jong W A, Visscher L, Nieuwpoort W C. J. Mol. Struct. (Theochem), 1999, 458: 41-52
[73] Alcock N W, Flanders D J, Kemp T J, Shand M A. J. Chem. Soc. Dalton Trans., 1985, 517-521
[74] Keramidas A D, Rikkou M P, Drouza C, Raptopoulou C P, Terzis A, Pashalidis I. Radiochim. Acta, 2002, 90: 549-554
国家自然科学基金项目(No.20933003,11079006,91026003)资助
/
〈 |
|
〉 |