English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1329-1337 前一篇   后一篇

• 放射化学专辑 •

锕系化合物荧光光谱理论研究进展

苏静, 李隽*   

  1. 清华大学化学系 理论与计算化学实验室 北京 100084
  • 收稿日期:2010-12-01 修回日期:2011-04-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail:junli@mail.tsinghua.edu.cn E-mail:junli@mail.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20933003,11079006,91026003)资助

Theoretical Studies on Fluorescence Spectra of Actinide Complexes

Su Jing, Li Jun*   

  1. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2010-12-01 Revised:2011-04-01 Online:2011-07-24 Published:2012-03-15

本文对锕系化合物荧光光谱的实验研究进行了系统总结,并在此基础上重点介绍了锕酰(actinyl)化合物的电子结构以及荧光光谱模拟的原理。结合我们关于铀酰-甘氨酸水合物结构、稳定性和荧光光谱模拟的研究工作,本文对锕系化合物荧光光谱理论研究的现状、理论方法和计算结果进行了综述。铀酰配合物中O—U—O单元的对称伸缩振动决定了其荧光特征,通过理论研究,结合计算化学模拟,可以解释铀酰-甘氨酸水溶液中振动分辨的实验光谱图,并阐明热带(hot band)峰强度异常高的成因。上述研究结果表明,现代计算化学和实验技术相结合,能够用于深入地分析锕系化合物的结构、光谱和性质,包括溶剂配位层、生物配体的配位结构、热力学和能量和荧光光谱等。

In this mini-review, we have briefly summarized the experimental research on fluorescence spectra of actinide complexes, the electronic structures of actinyl complexes, and the basic principle for computational simulations of fluorescence spectra.Although numerous fluorescence spectroscopy data had been available experimentally, there were no theoretical investigations on vibrationally resolved fluorescence spectra of actinide complexes. Recently we have performed for the first time computational modeling of vibrationally resolved fluorescence spectra of uranyl complexes using Heller’s time-dependent theory for electronic spectroscopy. Herein reviewed are the theoretical results from computational chemistry modeling on the coordination structures, stabilization energies and fluorescence properties of uranyl-glycine-water complexes. Our research has shown that the vibrationally resolved electronic spectra and the unusually high intensity of the illustrious uranyl hot-band can be interpreted by combining state-of-the-art computational chemistry and contemporary experimental techniques. This integrated theory and experiment approach can lead to a detailed understanding of the geometries, energetics, and luminescence properties of actinide compounds, including those with bio-ligands.

Contents
1 Introduction
1.1 Actinide speciation
1.2 Fluorescence of actinide compounds
1.3 Theoretical studies of electronic spectra of actinides
2 Electronic structure of actinyl ions
3 Principles of fluorescence spectroscopy simulation
4 Computational study of uranyl-glycine-water complexes
4.1 Structure and stability
4.2 Thermodynamic properties
4.3 Fluorescence spectra simulation
5 Conclusions and outlook

中图分类号: 

()


[1] 王驹(Wang J). 中国核工业(China Nuclear Industry), 2008, 6: 16-19

[2] 刘春立(Liu C L). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31: 45-52

[3] Denecke M A. Coord. Chem. Rev., 2006, 250: 730-754

[4] 刘期凤(Liu Q F), 刘宁(Liu N), 廖家莉(Liao J L), 金建南(Jin J N). 化学研究与应用(Chemical Research and Application), 2006, 18(5): 465-471

[5] Szabó Z, Toraishi T, Vallet V, Grenthe I. Coord. Chem. Rev., 2006, 250: 784-815

[6] Geipel G. Coord. Chem. Rev., 2006, 250: 844-854

[7] Gibson J K, Marcalo J. Coord. Chem. Rev., 2006, 250: 776-783

[8] May C C, Worsfold P J, Keith-Roach M J. Trends in Analytical Chemistry, 2008, 27: 160-168

[9] Moulin C, Decambox P, Mauchien P. J. Radioanal. Nucl. Chem., 1997, 226: 135-138

[10] Billard I, Geipel G. Springer Ser Fluoresc, 2008, 5: 465-492

[11] Kimura T, Kato Y. J. Alloys. Comp., 1998, 271/273: 867-871

[12] Rabinowitch E, Belford R L. Spectroscopy and Photoechemisty of Uranyl Compounds. Oxford University Press, Oxford GB, 1964

[13] Bell J T, Biggers R E. J. Mol. Spectr., 1965, 18: 247-275

[14] Bell J T, Biggers R E. J. Mol. Spectr., 1968, 25: 312-329

[15] Eliet V, Bidoglio G, Omenetto N, Parma L, Grenthe I. J. Chem. Soc. Faraday. Trans., 1995,91: 2275-2285

[16] Kirishima A, Kimura T, Tochiyama O, Yoshida Z. Radiochim. Acta, 2004, 92: 889-896

[17] Karbowiak M, Hubert S, Fourest B, Moulin C. Radiochim. Acta, 2004, 9 2: 489-494

[18] Rutsch M, Geipel G, Brendler V, Bernhard G, Nitsche H. Radiochim. Acta, 1999, 86: 135-141

[19] Brachmann A, Geipel G, Bernhard G, Nitsche H Radiochim. Acta, 2002, 90: 147-149

[20] Koban A, Geipel G, Roβerg A, Bernhard G. Radiochim. Acta, 2004, 92: 903-908

[21] Günther A, Geipel G, Bernhard G. Polyhedron, 2007, 26: 59-65

[22] Günther A, Geipel G, Bernhard G. Radiochim. Acta, 2006, 94: 845-851

[23] Gtz C, Geipel G, Bernhard G. J. Radioanal. Nucl. Chem., 2011, 287: 961-969

[24] Wang Z, Zachara J M, Yantasee W,Gassman P L, Liu C, Joly A G. Environ. Sci. Technol., 2004, 38: 5591-5597

[25] Cao X, Dolg M. Coord. Chem. Rev., 2006, 250: 900-910

[26] Kaltsoyannis N. Chem. Soc. Rev., 2003, 32: 9-16

[27] Vallet V, Macak P, Wahlgren U, Grenthe I. Theor. Chem. Acc., 2006, 115: 145-16

[28] Zhang Z, Pitzer R M. J. Phys. Chem. A, 1999, 103: 6880-6886

[29] Matsika S, Pitzer R M. J. Phys. Chem. A, 2001, 105: 637-645

[30] Matsika S, Pitzer R M. J. Phys. Chem. A, 2000, 104: 4064-4068

[31] Matsika S, Pitzer R M. J. Phys. Chem. A, 2000,104: 11983-11992

[32] Wang Q, Pitzer R M. J. Phys. Chem. A, 2001, 105: 8370-8375

[33] Ruipérez F, Danilo C, Réal F, Flament J-P, Vallet V. J. Phys. Chem. A, 2009, 113: 1420-1428

[34] Hay P J, Martin R L, Schreckenbach G. J. Phys. Chem. A, 2000, 104: 6259-6270

[35] Infante I, Gomes A S P, Visscher L. J. Chem. Phys., 2006, 125: art. no. 074301

[36] Li J, Bursten B E. J. Am. Chem. Soc., 1998, 120: 11456-11466

[37] Kaltsoyannis N, Bursten B E. J. Organomet. Chem., 1997, 528: 19-33

[38] 肖海 (Xiao H), 李隽(Li J). 结构化学(Chin. J. Struct. Chem. ), 2008, 27: 967-974

[39] 胡憾石(Hu H S),吴国是(Wu G S),李隽(Li J). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31: 25-34

[40] Lyon J T, Hu H S, Andrews L, Li J. Proc. Nat. Acad. Sci. USA, 2007, 104: 18919-18924

[41] Li J, Hu H S, Lyon J T, Andrews L. Angew. Chem. Int. Ed., 2007, 46: 9045-9049

[42] Wei F, Wu G S, Schwarz W H E, Li J. Theor. Chem. Acc. 2011, 129: 467-481

[43] Wei F, Wu G S, Li J. J. Chem. Theo. Comp., 2011, in press.

[44] Su J, Li J. Abstract Book of Spectroscopic, Radioanalytical and Nuclear Methods for Security Applications, Pacifchem 2010, Hunululu, Hawaii, 2010

[45] Su J, Zhang K, Schwarz W H E, Li J. Inorg. Chem., 2011, 50: 2082-2093

[46] Dennin R G, Snellgrove T R, Woodwark D R. Mol. Phys., 1976, 32: 419-442

[47] Barker T J, Denning R G, Thorne Jonathan R G. Inorg. Chem., 1987, 26: 1721-1732

[48] Denning R G, Norris J O W,Brown D. Mol. Phy., 1982, 46: 287-323

[49] Denning R G, Norris J O W,Brown D. Mol. Phy., 1982, 46: 325-364

[50] Denning R G. J. Phys. Chem. A, 2007, 111: 4125-4143

[51] Pepper M, Bursten B E. Chem. Rev., 1991, 91: 719-741

[52] Wang Z, Zachara J M, Mckinley J P, Smith S G, Environ. Sci. Technol., 2005, 39: 2651-2659

[53] Tian G, Rao L, Teat S J, Liu G. . Chem. Eur. J., 2009, 15: 4172-4185

[54] Wilkerson M P, Berg J M, Hopkins T A, Dewey H J. J. Solid State Chem., 2005, 178: 584-588

[55] Wilkerson M P, Arrington C A, Berg J M, Scot B L. J. Alloys Comp., 2007, 444/5: 634-639

[56] Wilkerson M P, Berg J M. J. Phys. Chem. A, 2008, 112: 2515-2518

[57] Talbot-Eeckelaers C, Pope S J A, Hynes A J, Copping R, Jones C J, Taylor R J, Faulkner S, Sykes D, Livens F R, May I. J. Am. Chem. Soc., 2007, 129: 2442-2443

[58] Lee S Y, Heller E J. J. Chem. Phys., 1979, 71: 4777-4788

[59] Heller E J, Sundberg, R L, Tannor D. J. Phys. Chem., 1982, 86: 1822-1833

[60] Heller E J. Acc. Chem. Res., 1981, 14: 368-375

[61] Tannor D J, Heller E J. J. Chem. Phys., 1982, 77: 202-218

[62] Neese F, Petrenko T, Ganyushin D, Olbrich G. Coord. Chem. Rev., 2007, 251: 288-327

[63] Petrenko T, Neese F. J. Chem. Phys., 2007, 127: art. no. 164319

[64] Acosta A. Zink J I. J. Organomet. Chem., 1998, 554: 87-103

[65] Bailey S E, Eikey R A, Abu-Omar M M, Zink J I. Inorg. Chem., 2002, 41: 1755-1760

[66] Huang K, Rhys A. Proc. R. Soc. Lond., 1950, 204A: 406-423

[67] Heller E J. J. Chem. Phys., 1975, 62: 1544-1556

[68] Fonger W H, Struck C W. J. Chem. Phys., 1974, 60: 1994-2002

[69] ADF 2007. 01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam (http: //www. scm. com)

[70] Fonseca Guerra C, Snijders J G, te Velde G, Baerends E J. Theor. Chem. Acc., 1998, 99: 391-403

[71] te Velde G, Bickelhaupt F M, van Gisbergen S J A, Fonseca Guerra C, Baerends E J, Snijders J G, Ziegler T. J. Comp. Chem., 2001, 22: 931-967

[72] de Jong W A, Visscher L, Nieuwpoort W C. J. Mol. Struct. (Theochem), 1999, 458: 41-52

[73] Alcock N W, Flanders D J, Kemp T J, Shand M A. J. Chem. Soc. Dalton Trans., 1985, 517-521

[74] Keramidas A D, Rikkou M P, Drouza C, Raptopoulou C P, Terzis A, Pashalidis I. Radiochim. Acta, 2002, 90: 549-554

[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[4] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[5] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[6] 池晓汪, 吴群燕, 于吉攀, 张覃, 柴之芳, 石伟群. 锕系异核双金属化合物[J]. 化学进展, 2019, 31(10): 1341-1349.
[7] 王晓方, 胡殷, 潘启发, 杨瑞龙, 龙重, 刘柯钊. 铀氮化物晶体结构及电子结构[J]. 化学进展, 2018, 30(12): 1803-1818.
[8] 靳永勇, 郝盼盼, 任军, 李忠. 单原子催化——概念、方法与应用[J]. 化学进展, 2015, 27(12): 1689-1704.
[9] 罗伟昂, 蒋斌杰, 程玲, 许一婷, 陈旭东, 戴李宗. 荧光探针技术在聚合物自组装研究中的应用[J]. 化学进展, 2013, 25(10): 1713-1725.
[10] 刘亚军*. 计算光化学[J]. 化学进展, 2012, 24(06): 950-956.
[11] 马玉臣*, 刘成卜. 研究激发态的多体格林函数理论[J]. 化学进展, 2012, 24(06): 981-1000.
[12] 陈丕恒, 赖新春, 汪小琳. 钚及其化合物的理论研究[J]. 化学进展, 2011, 23(7): 1316-1321.
[13] 邵娜, 张向媛, 杨荣华. 螺吡喃化合物在分析化学中的应用[J]. 化学进展, 2011, 23(5): 842-851.
[14] 丁敏 郭丽华 张玲 伍青. 荧光技术在两亲性聚合物研究中的应用*[J]. 化学进展, 2010, 22(0203): 458-464.
[15] 王艳 陶占良 陈军. 具有18电子结构的镁基过渡金属氢化物* [J]. 化学进展, 2010, 22(01): 234-240.