English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1308-1315 前一篇   后一篇

• 放射化学专辑 •

超临界流体萃取技术在乏燃料后处理中的应用

朱礼洋, 文明芬, 段五华, 徐景明*, 朱永(贝睿)   

  1. 清华大学核能与新能源技术研究院 北京 102201
  • 收稿日期:2010-12-01 修回日期:2011-03-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail:xujingming@mail.tsinghua.edu.cn E-mail:xujingming@mail.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21071089)资助

Application of Supercritical Fluid Extraction in Reprocessing of Spent Nuclear Fuel

Zhu Liyang, Wen Mingfen, Duan Wuhua, Xu Jingming*, Zhu Yongjun   

  1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 102201, China
  • Received:2010-12-01 Revised:2011-03-01 Online:2011-07-24 Published:2012-03-15

未来的动力堆乏燃料具有高燃耗、高钚含量和燃料类型多样等特点,采用传统的溶剂萃取法流程处理将面临很大挑战,而干法后处理技术虽经多年研究,仍有许多问题有待解决,因此有必要探索新的非水法后处理技术。将超临界流体萃取应用于乏燃料后处理可以简化后处理流程,大量减少二次废液的产生,具有很好的发展前景。本文综述了超临界流体萃取技术在乏燃料后处理中的应用研究,对基于超临界萃取技术的乏燃料后处理概念流程进行了评述。对将电化学插层法与超临界流体萃取技术结合,用于处理高温气冷堆乏燃料的可行性进行了讨论。

PUREX process is used in the reprocessing of spent nuclear fuel (SNF) for many years. But the operation of the process produces large volume of secondary waste and encounters difficulties in dealing with new type of spent nuclear fuel in the future, such as UO2 spent fuel with higher burn up and MOX (mixed oxide) spent fuel. Supercritical fluid extraction (SFE) as a novel non-aqueous technology has potential to use in nuclear industry. The current researches on application of SFE in nuclear industry include decontamination of solid radioactive waste, volume reduction of liquid radioactive waste and reprocessing of SNF. To use SFE in the reprocessing of SNF can simplify the process and reduce the secondary waste greatly. The reprocessing conceptual flow sheets based on supercritical fluid extraction are developed in Japan and Russia, which show promising prospect to be applied in the future. It is being investigated to use supercritical fluid extraction for the reprocessing of high temperature gas cooled reactor (HTGR) SNF in INET (Institute of Nuclear and New Energy Technology, Tsinghua University). The pebble fuel of HTGR is disintegrated by electrochemical intercalation method, and then the UO2 kernels are converted into nitrate by N2O4 and extracted by supercritical CO2 fluid containing TBP (tri-butyl phosphate). The recovery rate of uranium is 99.93%. The experimental results indicated the possibility of using electrochemical intercalation technology and SFE technology in reprocessing of HTGR spent nuclear fuel.

Contents
1 Introduction
2 Development trend of SNF reprocessing
2.1 Improvement of PUREX process
2.2 Development of pyrochemical process
3 Application of SFE in reprocessing
3.1 Principal of supercritical fluid extraction
3.2 Extraction of metal ions from solid matrix
3.3 Extraction of metal ions from aqueous solution
3.4 Direct extraction of actinide and lanthanide oxides
3.5 N2O4 nitration combined with SFE
3.6 Concept flow sheets of SNF reprocessing on SFE
4 R&D on reprocessing of HTGR SNF by SFE
4.1 Disintegration of pebble fuel of HTGR by electrochemical intercalation method
4.2 Supercritical fluid extraction of fuel kernel
5 Conclusion

中图分类号: 

()


[1] IAEA. Annual report 2009, GC(54)/4, 2009

[2] IAEA. Spent fuel reprocessing options. IAEA-TECDOC-1587, 2008

[3] Uhlir J, Marecek M J. Fluorine chemistry, 2009, 130: 89-93

[4] Toews K L, Shroll R M, Wai C M. Anal. Chem., 1995, 67: 4040-4043

[5] Syuichi I, Meguro Y, Yoshida Z. Chem. Lett., 1995, 365-366

[6] Sawada K, Tomioka O, Shimada T, Mori Y, Enokida Y, Yamamoto I. J. Nucl. Sci. Tech., 2006, 43(1): 98-102

[7] Kanekar A S, Pathak P N, Mohapatra P K, Manchanda V K. J. Radioanal. Nucl. Chem., 2010, 283(3): 789-796

[8] Trofimov T I, Samsonov M D, Lee S C, Smart N G, Wai C M. J. Chem. Technol. Biotechnol., 2001, 76: 1223-1226

[9] Kumar P, Pal A, Saxena M K, Ramakumar K L. Desalination, 2008, 232: 71-79

[10] Koh M, Yoo J, Park Y, Bae D, Park K, Kim H, Kim H. Ind. Eng. Chem. Res., 2006, 45: 5308-5313

[11] 欧阳应根(Ouyang Y G). 中国核工业(Zhong Guo He Gong Ye), 2006(6): 24-25

[12] 韩宾兵(Han B B). 清华大学硕士论文(Master Dissertation of Tsinghua University), 1996

[13] Jackson D P, Dormuth K W. Watching Brief on Reprocessing, Partitioning and Transmutation and Alternative Waste Management Technology -Annual Report 2008. NWMO TR-2008-22, 2008

[14] Takata T, Koma Y, Sato K, Kamiya M, Shibata A, Nomura K, Ogino H, Koyama T, Aose S. J. Nucl. Sci. Technol., 2004, 41(3): 307-314

[15] Drain F, Emin J L, Vinoche R, Baron P. WM’08, Phoenix, Arizona, 2008

[16] Chandler J, Hertel N. Prog. Nucl. Energy., 2009, 51: 701-708

[17] Uhlir J. Proc. 5th OECD/NEA Int. Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, Mol, Belgium, 1998

[18] 周贤玉(Zhou X Y). 核燃料后处理工程(Engineering for Nuclear Fuel Reprocessing). 哈尔滨: 哈尔滨工程大学出版社(Harbin: Harbin Engineering University Press), 2009

[19] Ogata S, Homma S, Sasahira A, Kawamura F, Koga J, Matsumoto S. J. Nucl. Sci. Technnol., 2004, 41(2): 135-141

[20] 欧阳应根(Ouyang Y G). 中国核科技报告(China Nuclear Science and Technology Report ), 2001, 367-381

[21] 刘学刚(Liu X G). 核化学与放射化学(Journal of Nuclear and Radiochemistry), 2009, 31(suppl.): 36-41

[22] OECD/NEA. Pyrochemical separations in nuclear applications. A status report. NEA No. 5427, 2004

[23] Ashraf-Khorassani M, Combs M T, Taylor L T. J. Chromatography A, 1997, 774: 37-49

[24] 赵东胜(Zhao D S), 刘桂敏(Liu G M), 吴兆亮(Wu Z L).天津化工(Tianjin Chemical Industry), 2007, 21(3): 10-12

[25] Wai C M, Wang S F. J. Biochem. Biophysical Methods, 2000, 43: 273-293

[26] Wai C M, Wang S F. J. Chromatography A, 1997, 785: 369-383

[27] Laintz K E, Wai C M, Yonker C R, Smith R D. Anal. Chem., 1992, 64: 2875-2878

[28] 苏宝根(Su B G). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2007

[29] Wang S F. Doctoral Dissertation of University of Idaho, 2004

[30] Kumar P, Rao A, Ramakumar K L. Radiochim. Acta, 2009, 97(2): 105-112

[31] Fox R V, Mincher B J, Spectrum 2002, Reno, NV, 2002

[32] Meguro Y, Iso S, Yoshida Z. Anal. Chem.,1998, 70: 1262-1267

[33] Baaden M, Schurhammer R, Wippff G. J. Phys. Chem. B, 2002, 106: 434-441

[34] Lin Y H, Smart N G, Wai C M. Environ. Sci. Technol., 1995, 29(10): 2706 -2708

[35] Mekki S, Wai C M, Billard I, Moutiers G, Burt J, Yoon B, Wang J S, Gaillard C, Ouadi A, Hesemann P. Chem. Eur. J., 2006, 12: 1760-1766

[36] Wang S F, Sheaff C N, Yoon B, Addleman R S, Wai C M. Chem. Eur. J., 2009, 15: 4458-4463

[37] Lin Y H. Doctoral Dissertation of University of Idaho, 1997

[38] Samsonov M D, Trofimov T I, Kulyako Y M, Myasoedov B F. Radiochemistry, 2007, 49(3): 246-250

[39] Tomioka O, Meguro Y, Enokida Y, Yamamoto I, Yoshida Z. J. Nucl. Sci. Technol., 2001, 38(12): 1097-1102

[40] Sawada K, Uruga K, Koyama T, Shimada T, Mori Y, Enokida Y, Yamamoto I. J. Nucl. Sci. Technol., 2005, 42(3): 301-304

[41] Trofimov T I, Samsonov M D, Kulyako Y M, Myasoedov B F. C. R. Chim., 2004, 7(12): 1209-1213

[42] Shadrin A, Murzin A, Lumpov A, Romanovsky V. Solvent Extr. Ion Exch., 2008, 26(6): 797-806

[43] Zhu L Y, Duan W H, Xu J M, Zhu Y J. Chin. J. Chem. Eng., 2009, 17(2): 214-218

[44] Fox R V, Ball R D, Harrington P, Rollins H W, Jolley J J, Wai C M. J. Supercrit. Fluid, 2004, 31(3): 273-286

[45] Fox R V. Doctoral Dissertation of University of Idaho, 2003

[46] Buchikhin E P, Kuznetsov A Y, Vidanov V L, Shatalov V V. Radiochemistry, 2006, 48(5): 409-411

[47] Sawada K, Hirabayashi D, Enokida Y. Prog. Nucl. Energy, 2008, 50: 483-486

[48] Gibson G, Katz J J. J. Am. Chem. Soc., 1951, 73(11): 5436-5438

[49] Swada K, Hirahayashi D, Enokida Y. Global 2007, Boise, Idaho, 2007. 1518-1522

[50] Bondin V V, Bychkov S I, Efremov I G, Revenko Y A, Babain V A, Murzi A A, Romanovsky V N, Fedorov Y S, Shadrin A Y, Ryabkova N V. Global 2007, Boise, Idaho, 2007. 1523-1529

[51] Shadin A, Babain V, Kamachev V, Murzin A, Shafikov D, Dormidonova A. ISEC 2008, Tucson, Arizona, 2008. 647-652

[52] Bondin V V, Bychkov S I, Revenko Y A, Efremov I G, Murzin A A, Shadrin A Y, Babain V A, Romanovskii V N, Kudryavtsev E G. Radiochemistry, 2008, 50(3): 253-255

[53] Smart N G, Wai C M, Phelps C. Chem. Britain, 1998, 34: 34-36

[54] Shimada T, Ogumo S, Ishihara N, Kosaka Y, Mori Y. J. Nucl. Sci. Technol., 2002, (supplement 3): 757-760

[55] Enokida Y, Sawada K, Shimada T, Yamamoto I. Global 2007, Boise, Idaho, 2007. 1029-1032

[56] Shimada T, Ogumo S, Ishihara N, Enokida Y, Yamamoto I. Trans. At. Energy Soc. Jpn., 2007, 6(2): 214-224

[57] Suyama K, Shimada T, Ishihara N, Kuroda K, Mori Y, Ishida Y. Global 2009. Paris, 2009: 166-171

[58] Wai C M. ACS Symposium Series 933, 2006. 57-70

[59] Shadrin A, Murzin A, Romanovsky V, Bychkov S, Revenko Y. Global 2005, Tsukuba, 2005, paper No.128

[60] 吴宗鑫(Wu Z X), 张作义(Zhang Z Y). 先进核能系统和高温气冷堆(Advanced Nuclear Energy System and High Temperature Gas-Cooled Reactor). 北京: 清华大学出版社 (Beijing: Tsinghua University Press), 2004

[61] Del Cul G D, Spencer B B, Forsberg C W, Collins E D. Triso-coated fuel processing to support high-temperature gas-cooled reactors. ORNL/TM-2002/156, Oak Ridge National Laboratory, 2002

[62] Sorokina N E, Maksimova N V, Avdeev V V. Neorganicheskie Materialy, 2001, 37(4): 441-447

[63] Merz E. Kerntechnik, 1970, 12(8): 341-346

[64] Tian L F, Wen M F, Li L Y, Chen J. Electrochim. Acta, 2009, 54(28): 7313-7317

[65] Zhu L Y, Duan W H, Xu J M, Zhu Y J. Ind. Eng. Chem. Res., 2010, 49(20): 11195-11199

[1] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
[2] 赵新红, 高向平, 郝志鑫, 张晓晓. 多级孔磷酸铝分子筛的合成、表征及催化应用[J]. 化学进展, 2016, 28(5): 686-696.
[3] 寇龙, 王有和, 彭鹏, 阎子峰. 介孔沸石分子筛的制备[J]. 化学进展, 2014, 26(04): 522-528.
[4] 韦悦周. 国外核燃料后处理化学分离技术的研究进展及考察[J]. 化学进展, 2011, 23(7): 1272-1288.
[5] 叶国安, 张虎. 核燃料后处理技术发展及其放射化学问题[J]. 化学进展, 2011, 23(7): 1289-1294.
[6] 张安运, 肖成梁, 柴之芳. 硅基超分子识别材料在乏燃料后处理中的研究进展[J]. 化学进展, 2011, 23(7): 1355-1365.
[7] 崔大庆. 综述KBS-3处置库近场还原性环境对处置安全的裨益[J]. 化学进展, 2011, 23(7): 1411-1428.
[8] 袁立永, 彭静, 翟茂林. 咪唑离子液体及其萃取体系的辐射效应研究[J]. 化学进展, 2011, 23(7): 1469-1477.
[9] 石伟群, 赵宇亮, 柴之芳. 纳米材料与纳米技术在先进核能系统中的应用前瞻[J]. 化学进展, 2011, 23(7): 1478-1484.
[10] 易军,李云春,弓振斌. 食品中农药残留分析的样品前处理技术进展*[J]. 化学进展, 2002, 14(06): 415-.
[11] 黄骏雄. 样品制备与处理的进展--无溶剂萃取技术[J]. 化学进展, 1997, 9(02): 179-.