English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1295-1307 前一篇   后一篇

• 放射化学专辑 •

热力学和光谱学方法在锕系元素络合化学研究中的应用

饶林峰   

  1. 美国劳伦斯伯克利国立实验室 伯克利 加利福尼亚 94720
  • 收稿日期:2011-02-01 修回日期:2011-04-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail:LRao@lbl.gov E-mail:LRao@lbl.gov

Application of Thermodynamic and Spectroscopic Techniques to the Studies of Actinide Complexation

Linfeng Rao   

  1. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  • Received:2011-02-01 Revised:2011-04-01 Online:2011-07-24 Published:2012-03-15

为了安全地,可持续地发展和利用核能,必须建立新一代的,包括先进的锕系元素分离流程及安全可靠的核废物处理/处置流程在内的核燃料循环体系。由于锕系元素络合化学的基础研究在核燃料循环体系的开发中起着十分重要的作用,近年来锕系元素与各种配体的络合成为相当热门的研究课题。有的配体作为萃取剂或反萃剂用于后处理过程中锕系元素的分离,另一些配体存在于环境中通过络合或氧化还原反应来决定锕系元素的物种形式及迁移行为。因此,只有在基础科学的层面上来研究锕系元素的络合化学,才能有助于解释和预测锕系元素在分离过程和环境迁移中的行为。许多热力学和光谱学方法可以用来研究锕系元素在溶液中的络合反应,提供关于锕系元素络合物的本性(如:离子价/共价,外界/内界络合),能量(如:自由能,热焓,热熵,热容)和结构的基础科学信息。本文有选择地介绍几种近年来常用于锕系元素络合化学研究的热力学和光谱学方法,包括微量热学,吸收光谱和荧光光谱学, 以及X射线吸收光谱学。本文重点不在阐述方法原理,而在举例说明使用这些方法能得到的科学信息。

Complexation of actinide elements with various ligands has become a subject of significant interest in recent years, due to the rapid development of nuclear energy and the demand for advanced actinide separation processes. Some ligands play very important roles in actinide separations, while other ligands determine the speciation of actinides and their transport in the environment. Therefore, fundamental understanding of actinide complexation is critical to the development of advanced fuel cycles, including the used fuel reprocessing and the safe management of nuclear wastes. A number of thermodynamic and spectroscopic techniques can be applied to the studies of actinide complexation in solution, providing fundamental information on the nature (e.g., ionic bonding vs covalency, outer sphere vs inner sphere), energetics (e.g., free energy, enthalpy, entropy and heat capacity) and structures of actinide complexes. This paper briefly reviews the application of selected thermodynamic and spectroscopic techniques that have been frequently used in recent years for studying actinide complexation, including microcalorimetry, optical absorption and fluorescence spectroscopy, and X-ray absorption spectroscopy. Emphasis is placed on demonstrating, with examples, the scientific information that can be extracted from the measurements with the techniques.

中图分类号: 

()


[1] Puigdomenech I, Plyasunov A V, Rard J A, Grenthe I. Temperature corrections to thermodynamic data and enthalpy calculations. in “Modeling in Aquatic Chemistry” (Eds., Grenthe I, Puigdomenech I). NEA/OECD, Paris, 1997, Chapter X, and references therein

[2] Rao L, Tian G, Srinivasan T G, Zanonato P, Di Bernardo P. J. Solution Chem., 2010, 1888-1897

[3] Tian G, Rao L. Inorg. Chem., 2009, 48: 6748-6754

[4] Di Bernardo P, Zanonato P, Tian G, Tolazzi M, Rao L. J. Chem. Soc. Dalton Trans., 2009, 23: 4450-4457

[5] Rao L, Tian G, Xia Y, Friese J I. J. Thermal Analysis and Calorimetry, 2009, 95 (2): 409-413

[6] Rao L, Zhang Z, Zanonato P, Di Bernardo P, Bismondo A, Clark S B. J. Chem. Soc. Dalton Trans., 2004, 2867-2872

[7] Rao L, Srinivasan T G, Garnov A Y, Zanonato P, Di Bernardo P, Bismondo A. Geochim. Cosmochim. Acta, 2004, 68: 4821-4830

[8] Zanonato P, Di Bernardo P, Bismondo A, Liu G, Chen X, Rao L. J. Am. Chem, Soc., 2004, 126: 5515-5522

[9] Rao L, Garnov A Y, Jiang J, Di Bernardo P, Zanonato P, Bismondo A. Inorg. Chem., 2003, 42 (11): 3685-3692

[10] Jiang J, Rao L, Di Bernardo P, Zanonato P, Bismondo A. J. Chem. Soc. Dalton Trans., 2002, 1832-1836

[11] Hansen L D, Lewis E A, Eatough D J. Instrumentation and Data Reduction. in Analytical Solution Chemistry, (Ed. Grime K). John Wiley & Sons, Inc., 1985, Chapter 3

[12] Eatough D J, Lewis E A, Hansen L D. Determination of ΔHR and Keq Values. in Analytical Solution Chemistry (Ed. Grime K), John Wiley & Sons, Inc., 1985, Chapter 5

[13] Blandamer M J, Cullis P M, Gleeson P T. Chem. Soc. Rev., 2003, 32: 264-267

[14] Rao L. Chem. Soc. Rev., 2007, 36 (6): 881-892

[15] Rao L, Zanonato P, Di Bernardo P, Bismondo A. J. Chem. Soc. Dalton Trans., 2001, 1939-1944

[16] Rao L, Zanonato P, Di Bernardo P, Bismondo A. Inorg. Chim. Acta, 2000, 306: 49-64

[17] Rao L, Tian G, Xia Y, Friese J I. Thermodynamics of neptunium(Ⅴ) fluoride and sulfate at elevated temperatures. Proceedings of the 11th International High-Level Radioactive Waste Management Conference (IHLRWM), April 30-May 4, 2006, Las Vegas, Nevada. pp.374-378

[18] Rao L, Tian G, Xia Y, Friese J I. J. Thermal Analysis and Calorimetry, 2009, 95 (2): 409-413

[19] Morss L R, Edelstein N M, Fuger J. The Chemistry of the Actinides and Transactinide Elements, Vol. 1- 5. Springer, 2006

[20] Rao L, Tian G. Symmetry, 2010, 2(1): 1-14

[21] Gans P, Sabatini A, Vacca A. Talanta, 1996, 43: 1739-1753 (also website: http://www.hyperquad.co.uk/)

[22] Rao L, Choppin G R, Bergeron R J. Radiochim. Acta, 2000, 88: 851-856

[23] Choppin G R, Rao L, Rizkalla E N, Sullivan J C. Radiochim. Acta, 1992, 57: 173

[24] (a) Matsika S, Pitzer R M, Reed D T. J. Phys. Chem. A, 2000, 104: 11983-11992; (b) Matsika S, Pitzer R M. J. Phys. Chem. A, 2000, 104: 4064-4068

[25] (a) Krot N N, Bessonov A A, Perminov V P. Dokl. Akad. Nauk SSSR, 1990, 312: 1402-1404. (b) Bessonov A A, Afonas'eva T V, Krot N N. Soviet Radiochemistry, 1990, 32: 453-457. (c) Bessonov A A, Afonas'eva T V, Krot N N. Soviet Radiochemistry, 1991, 33: 245-250. (d) Grigor'ev M S, Baturin N A, Bessonov A A, Krot N N. Radiochemistry, 1995, 37: 12-14. (e) Garnov A Y, Krot N N, Bessonov A A, Perminov V P. Radiochemistry, 1996, 38: 402-406

[26] Tananaev G. Soviet Radiochemistry, 1990, 32: 476-479

[27] Tian G, Xu J, Rao L. Angew. Chem. Int. Ed., 2005, 44: 6200-6203

[28] Tian G, Rao L, Oliver A. Chem. Commun., 2007, 4119-4121

[29] Tian G, Rao L, Teat S J. Inorg. Chem., 2009, 48: 10158-10164

[30] Tian G, Rao L. Dalton Trans., 2010, 39: 9866-9871

[31] Rao L, Tian G. Dalton Trans., 2011, 40 (4): 914-918

[32] Horrocks W D Jr, Sudnick D R. J. Am. Chem. Soc., 1979, 101: 334-340

[33] Beitz J V, Radiochim. Acta, 1991, 52/53: 35-39

[34] Kimura T, Choppin G R, Kato Y, Yoshida Z. Radiochim. Acta, 1996, 72: 61-64.

[35] Tian G, Edelstein N M, Rao L. J. Phys. Chem. A, 2011, 115 (10): 1933-1938.

[36] Bünzli J C G, Wessner D. Coord. Chem. Rev., 1984, 60: 191-253

[37] Barthelemy P P, Choppin G R. Inorg. Chem., 1989, 28: 3354-3357

[38] Tian G, Martin L R, Rao L. Inorg. Chem., 2010, 49: 10598-10605

[39] Metcalf D H, Dai S, Del Cul G D, Toth L M. Inorg. Chem., 1995, 34: 5573-5577

[40] Liu G K, Chen X Y, Huang J. Mol. Phys., 2003, 101: 1029-1036

[41] Tian G, Rao L, Teat S J, Liu G. Chemistry, a European Journal, 2009, 15: 4172-4181

[42] Stohr J. NEXAFS Spectroscopy. Berlin: Springer-Verlag, 1992

[43] Shuh D K. Speciation, Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, OECD NEA Workshop Proceedings, Karlsruhe, Germany, Sept. 2006, (2007)

[44] Nilsson H J, Tyliszczak T, Wilson R E, Werme L, Shuh D K. J. Anal. Bioanal. Chem., 2005, 383: 41-47

[45] Denecke M A, Reich T, Pompe S, Bubner M, Heise K H, Nitsche H, Allen P G, Bucher J J, Edelstein N M, Shuh D K. J. de Physique IV, 1997, 7: 637-638

[46] Arhland S. Solvation and Complex formation in Protic and Aprotic Solvents. in The Chemistry of Nonaqueous Solvents (Ed. Lagowsky J J). New York: Academic Press, 1978,1-62

[47] Nash K L, Gelis A V, Jensen M P, Bond A H, Sullivan J C, Rao L, Garnov A. Nuclear Science and Technology, 2002, (Supplement 3): 512-515

[1] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[2] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[3] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[4] 邹慧娜, 朱守非. 邻菲罗啉类配体在铁系元素催化反应中的应用[J]. 化学进展, 2020, 32(11): 1766-1803.
[5] 杨世迎, 薛艺超, 王满倩. 络合态重金属废水处理:基于高级氧化技术的解络合机制[J]. 化学进展, 2019, 31(8): 1187-1198.
[6] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[7] 朱本占, 肖璇, 巢细娟, 唐苗, 黄蓉, 邵杰. DNA分子“光开关”含钌多吡啶络合物细胞摄取、胞内分布及毒性机理研究[J]. 化学进展, 2018, 30(12): 1975-1991.
[8] 殷俞*, 张壮壮, 徐丹, 文志豪, 杨志峰, 袁爱华. 多孔材料基π络合吸附材料的合成及其应用[J]. 化学进展, 2017, 29(6): 628-636.
[9] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[10] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[11] 杨楚汀, 韩军, 罗阳明, 胡胜, 汪小琳. 环肽对金属离子的识别作用[J]. 化学进展, 2014, 26(09): 1537-1550.
[12] 马雪璐, 雷鸣. 双核过渡金属络合物引发氮分子活化研究[J]. 化学进展, 2013, 25(08): 1325-1333.
[13] 孙学科, 陈上, 张兴宏*, 戚国荣. 双金属氰化络合物及其催化的聚合反应[J]. 化学进展, 2012, (9): 1776-1784.
[14] 王兆慧, 宋文静, 马万红, 赵进才. 铁配合物的环境光化学及其参与的环境化学过程[J]. 化学进展, 2012, 24(0203): 423-432.
[15] 赵青松, 努丽燕娜, 郭永胜, 杨军, 王久林. 可充镁电池电解液[J]. 化学进展, 2011, 23(8): 1598-1610.