English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1272-1288 前一篇   后一篇

• 放射化学专辑 •

国外核燃料后处理化学分离技术的研究进展及考察

韦悦周   

  1. 上海交通大学核科学与工程学院 上海 200240
  • 收稿日期:2011-01-01 修回日期:2011-03-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail:yzwei@sjtu.edu.cn E-mail:yzwei@sjtu.edu.cn

Progress and Discussion on Chemical Separation Technologies for Nuclear Fuel Reprocessing Abroad

Wei Yuezhou   

  1. School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2011-01-01 Revised:2011-03-01 Online:2011-07-24 Published:2012-03-15

后处理技术可分为使用水溶液的湿法和不使用水溶液的干法。湿法主要有溶剂萃取法(液液萃取法)、离子交换法和沉淀法等。以TBP(磷酸三丁酯)为萃取剂的PUREX法是当今后处理的主流技术。通过PUREX流程,可回收乏燃料中约99.5%的铀和钚,但由于长寿命次锕系元素(MA: Np、Am、Cm)以及Tc等得不到有效的分离回收,放射性废物的放射毒性仅降低一个量级。并且该技术本身存在萃取工艺流程复杂,设备规模大,产生大量的难处理有机废液等问题。多年来世界核能主要国家都在致力于改良PUREX流程的同时,开展更先进的湿法后处理技术研发。干法后处理采用熔盐或液态金属作为介质,主要有电解精炼法、金属还原萃取法、沉淀分离法和氟化物挥发法等。具有装置规模较小,耐辐照性强,临界安全性高等优点。但分离性能较低,且由于操作温度高(数百摄氏度),材料耐用性以及操作可靠性尚待解决。近年来干法作为金属燃料后处理以及超铀元素嬗变燃料处理的分离技术,重新受到重视。本文概括介绍了国外先进湿法和干法后处理技术的研究动向,并对分离技术中的主要化学问题进行了分析和考察。

Reprocessing technologies can be divided into wet process using aqueous solution and dry process. The wet process includes solvent extraction (liquid-liquid extraction), ion exchange, precipitation, etc. The PUREX process which uses TBP as extractant and can recover about 99.5% of the U and Pu from spent fuel is the only successfully commercialized reprocessing technology nowadays.However, the PUREX process still has some significant drawbacks such as complicated extraction procedures, generation of a great amount of waste and utilization of large scale equipment. In addition, it can not effectively recover the long-lived nuclides such as minor actinides (Np, Am, Cm) and Tc, which will result in a long term radiological effect on the environment. In recent years, many efforts have been devoted to the improvement of the PUREX process and the study of advanced wet reprocessing technologies. Dry process utilizing electro-refining in molten salt, reductive extraction in liquid metal or volatilization of fluorides is attracting wide attention, because it has the advantages of compact equipment, high radiation resistance and critical safety. But relatively low separation factor and corrosion of materials at high temperature are the main problems of the dry process. This article reviews the progress in the chemical separation technologies for nuclear fuel reprocessing abroad. Furthermore, some chemical problems in separation processes are analyzed and discussed.

Contents
1 Necessity for the development of advanced reprocessing technologies
2 Progress and discussion on advanced wet reprocessing technologies
2.1 Extraction processes based on the improvement of PUREX
2.2 Separation processes using novel extractants
2.3 Other wet separation processes
2.4 Separation processes for MA and FP
2.5 Summary of wet separation processes
3 Progress and discussion on dry reprocessing technologies
3.1 The principle and characteristics of dry separation processes
3.2 Molten salt electro-refining process for metalic nuclear fuel
3.3 Molten salt electro-reduction process for oxide nuclear fuel
3.4 Hybrid process of dry and wet separation technologies
3.5 Summary of dry separation processes
4 Concluding remarks

中图分类号: 

()


[1] Benedict M, Pigford T H, Levi H W. Nuclear Chemical Engineering(2nd Edition), 1981, McGraw-Hill

[2] Takahashi K. Analysis and Study of Spent Fuel Reprocessing Technology from Birth to Present, Ronbunshi of Atomic Energy Society of Japan, 2006, 5 (2): 152-165 (in Japanese)

[3] Research Organization for Information Science & Technology. Gensiryokuhyakkajiten ATOMICA, http://www.rist.or.jp/atomica/ (in Japanese)

[4] ISIS (Institute for Science and International Security), Status and Stocks of Military Plutonium in the Acknowledged Nuclear Weapon States, (2004), http://www.isis-online.org

[5] Nuclear Weapon Archive, France's Nuclear Weapons: French Nuclear Facilities. Marcoule (2001), http://nuclearweaponarchive.org

[6] Suzuki A. Plutonium, The University of Tokyo Publisher, 1994 (in Japanese)

[7] Yu H, Hu Y. Fuel Cycle inside FBR, Studies on Development Strategy of Nuclear Fuel Cycle in China (Consulting report of the Chinese Academy of Science), 2010 (in Chinese)

[8] Akimoto Y. Subjects in Nuclear Policies Faced by Japan, The Lecture at Kansai Electric Power Company. 6 July, 2005 (in Japanese)

[9] Wei Y Z, Arai T, Kumagai M. A Study on FBR fuel Reprocessing by Ion Exchange Method, JNC TJ9400 2000-002 (in Japanese)

[10] Atomic Energy Society of Japan. Overview of Partitioning and Transmutation Technology Development, Chapter 4, 2004 (in Japanese)

[11] IAEA: Spent Fuel Reprocessing Options, IAEA-TECDOC-1587(2008)

[12] Research Committee on Partitioning and Transmutation Cycle of AESJ. Status and Perspectives of Partitioning and Transmutation Technology. Journal of AESJ, 2008(3) 158-163 (in Japanese)

[13] A Report of Japan Atomic Energy Commission Attached papers: http://www.aec.go.jp/jicst/NC/ senmon/bunri/siryo/bunri03/siryo2-2.pdf (in Japanese)

[14] Uchiyama G, Hotoku S, Fujine S, Maeda M. Nucl.Technol.,1998,122(2): 222-227

[15] Todd T A, Felker L K, Vienna J D, Bresee J, Lesica S. The Advanced Fuel Cycle Initiative Separations and Waste Campaign: Accomplishments and Strategy, Proceedings of GLOBAL 2009. Paris, Sep. 8-11, 2009, 9111

[16] Phillips C, Arm S, Banfield Z, Taylor R. Use of Pilot Plants for Developing used Nuclear Fuel Recycling Facilkities. Proceedings of GLOBAL 2009. Paris, Sep. 8- NFDB3 11 2009, 9509

[17] Nash K L, Grimes T S, Nilsson M. Fundamental Studies of TALSPEAK Chemistry for Trivalent Actinide- NFDB3 Lanthanide Separations in Advanced Nuclear Fuel Cycles. Proceedings of GLOBAL 2009. Paris, Sep. 8-11, 2009, 9457

[18] Board of Inquiry Report:Fractured Pipe with Loss of Primary Containment in the THORP Feed Clarication Cell, BNFL,May 2005, http://www.britishnucleargroup.com/

[19] Nakahara M, Sano Y, Koizumi T. U, Pu and Np Co-recovery in Simplified Solvent Extraction Process, JAEA-Research 2008-078 (in Japanese)

[20] Tachimori S. ARTIST Process: A Novel Chemical Process for Treatment of Spent Nuclear Fuel, JAEA-Research 2001-048 (in Japanese)

[21] Tachimori S, Suzuki S, Sasaki Y. Journal of AESJ, 2001, 43(12): 1235 (in Japanese)

[22] Tachimori S, Sasaki Y, Suzuki S. Solvent Extr. Ion Exch.,2002,20(6):687-699

[23] CEA Textbook: Le Traitement-Recyclage du Combustible Nucleaire Use. 2008

[24] Warin D, Poinssot C, Baron P, Lorrain B. Advanced processes for Actinide Partitioning: Recent Experiments and Results, Proceedings of GLOBAL 2009. Paris, Sep. 8-11 2009, Paper 9531

[25] Miguirditchian M, Sorel C, Camès B, Bisel I, Baron P, Espinoux D, Calor J N, Viallesoubranne C, Lorrain B, Masson M. HA Demonstration in the Atalante Facility of the Ganex 1st Cycle for the Selective Extraction of Uranium from HLW, Proceedings of GLOBAL 2009. Paris, Sep. 8-11 2009, 9377

[26] Wei Y Z, Kumagai M, Takashima Y, Bruggeman A, Gyseman M. J. Nucl. Sci. Technol., 1999,36 :304-306

[27] Wei Y Z, Kumagai M, Takashima Y, Sawa T, Bruggeman A, Gyseman M. An Advanced Ion Exchange Process for Reprocessing Spent Nuclear Fuels-Separation of Real Spent Fuel Solutions and Conceptual Design of the Process, Proc. Global 2001, Paris, Sep. 8-11, 2001,003

[28] Wei Y Z. J. Ion Exchange, 2005,16(2) :102-114

[29] Ikeda Y, Wada E, Harada M, Chikazawa T, Kikuchi T, Mineo H, Morita Y, Nogami M, Suzuki K. J. Alloys Comp., 2004,374 :420-425

[30] Y. Morita, Morita Y, Kawata Y, Mineo H, Koshino N,Asanuma N, Ikeda Y,Yamasaki K, Chikazawa T, Tamaki Y, Kikuchi T. J. Nucl. Sci. Technol., 2007,44:354-360

[31] Takaki N, Shinoda Y, Watanabe M, Yoshida K. ORIENT-CYCLE-Evolutional Recycle Concept with Fast Reactor for Minimizing High-Level Waste, Proc. of The Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning &Transmutation,Oct.14-16,2002, Korea,2003

[32] Koyama S, Ozawa M. Advanced ORIENT Cycle Study (Phase I) (8) Summary and prospect, Proceedings of 2010 Fall Meeting of Atomic Energy Society of Japan (in Japanese)

[33] Shimada T, et al. Development on Direct Extraction of Uranium and Plutonium from Spent Fuel by Super-DIREX Reprocessing Method (19), Proceedings of 2005 Spring Meeting of Atomic Energy Society of Japan (in Japanese)

[34] Suyama K, Shimada T, Ishihara N, Kuroda K, Mori Y, Ishida Y. Development of Nuclear Fuel Recycle System by using Supercritical Fluid Carbon Dioxide for the Transition Period from LWR to FBR, Global 2009, Paris, 2009. 9385

[35] Horwitza E P, Kalinaa D C, Diamonda H, Vandegrifta G F, Schulzb W W.Solvent Extr. Ion Exch., 1985,3(1/2):75-109

[36] Weaver B, Kappelmann F A. TALSPEAK: A New Method of Separating Americium and Curium from the Lanthanides by Extraction from an Aqueous Solution of an Aminopolyacetic Acid with a Monoacidic Organophosphate or Phosphonate,ORNL-3559,1964

[37] Madic C, Blanc P, et al. Actinide Partitioning from High Level Liquid Waste Using the Diamex Process”,Proc.of Record ’94, 1994, vol.3 (poster session:actinide separation)

[38] Baron P, Heres X, Lecomte M, Masson M.Separation of the Actinides: the DIAMEX-SANEX Concept,Proc. of Global 2001,2001

[39] Rostaing C, Baron P, Warin D, Duhamet J, Ochem D.Advanced processes for minor actinides recycling: studies towards potential industrialization, Proceedings of GLOBAL 2009,Paris,2009. 9380

[40] Pochon P, Sans D, Lartigaud C, Bisel I.Management of high level radioactive aqueous effluents in advanced partitioning process, Proceedings of GLOBAL 2009,Paris, 2009. 9114

[41] Morita Y, Yamaguchi I, Fujiwara T, Mizoguchi K, Kubota M. Cold and Semi-Hot Tests of 4-Group Partitioning Process at NUCE F, JAERI-Research, 2000, 2000-24 (in Japanese)

[42] Kubota M, Morita Y. Preliminary Assessment on Four Group Partitioning Process Developed in JAERI, Proc. of Global ’97,1997.vol.1: 458

[43] Ozawa M, Koma Y, Nomura K, Tanaka Y. J. Alloy. Compounds, 1998,271/273:538-543

[44] Koma Y, Watanabe M, Nemoto S, Tanaka Y.Solvent Extr. Ion Exch., 1998,16 (6):1357-1367

[45] Japan Atomic Energy Agency, The Japan Atomic Power Company. Feasibility Study on Commercialized Fast Reactor Cycle System (Phase II), Final Report, March 2006 (in Japanese)

[46] Japan Science and Technology Agency, Innovative Nuclear Research and Development program-Special Promotion Area, July 2006. http://www.jst.go.jp/nrd/bosyu/h18tokushinbosyu.html (in Japanese)

[47] http://www.aec.go.jp/jicst/NC/senmon/bunri/siryo/bunri03/siryo2-2.pdf

[48] Wei Y Z, Hoshi H, Kumagai M, Asakura T, Morita Y. J. Alloys Compounds, 2004,374(1/2) :447-450

[49] Hoshi H, Wei Y Z, Kumagai M, Asakura T, Morita Y. J. Alloys Compounds,2004, 374(1/2) :451-455

[50] Wei Y Z, Hoshi H, Kumagai M, Asakura T, Uchiyama G. J. Nucl. Sci. Technol.,2002,Suppl. 3 : 761

[51] Wei Y Z, Hoshi H, Morita Y, Bruggeman A, Goethals P. Separation of Am and Cm from HLLW by Extraction Chromatography Using Novel R-BTP Extraction Resins, Proceedings of Global’2009,Paris,2009. 9390

[52] Adnet J M, Donnet L, Chartier D, Bros P, Fire N, Brossard P. The Development of the SESAME Process, Proc. of Global ’97, 1997.vol.1:592

[53] Suzuki T, Takahashi K, Nogami M, Nomura M, Ozawa M, Koyama S, Mimura H, Fujita R, Fujii Y. Concept of Advanced Spent Fuel Reprocessing based on Ion Exchange, GLOBAL 2007, USA. 2007

[54] Kubota M. Radiochimica Acta,1993,63:91-96

[55] Kubota M, Yamaguchi I, Morita Y, Yamagishi I. Radiochemistry,1997 39:299-303

[56] Paviet-Hartmann P, Raymond A. Separation of 99Tc from Real Effluents by Crown Ethers, Proc.of Global ’99, 1999

[57] Dozol J F, Lamare V, Simon N, Eymard S, Rouquette H, Tournois B. New Calix

[4] Crown for the Selective Extraction of Cesium, Proc. of Global ’97, 1997,vol.2:1517

[58] Horwitz E P, Dietz M L, Fisher D E. Solvent Extr. Ion Exch.,1991,9(1):1-25

[59] Wood D J, Law J D, Herbst R S, Todd T A. Removal of Sr and Hg from Acidic Liquid Radioactive Waste by Solvent Extraction with the SREX Process, Proc. of Global ’99, 1999

[60] Inoue M, et al., Development of Pyropartitioning of Transuranium Elements from High-Level Liquid Waste、CRIEPI Research Report, 1998. T57 (in Japanese)

[61] Kurata M, Kinoshita K, Hijikata T, Inoue T. J. Nucl. Sci. Technol.,2000,37(8):682-690

[62] Uozumi K, Kinoshita K, Inoue T, Fusselman S P, Grimmett D L, Roy J J, Storvick T S, Krueger C L, Nabelek C R. J. Nucl. Sci.Technol.,2001,38(1):36-44

[63] Kinoshita K, Kurata M, Inoue T. J. Nucl.Sci.Techmol.,2000,37(1):75-83

[64] Iizuka M, Uozumi K, Inoue T, Iwai T, Shirai O, Arai Y. J. Nucl. Mater.,2001,299:32-42

[65] Ahn D H. Development of the Electrowinning System for TRU Recovery in Korea, The 9th Joint Workshop between China and Korea on Nuclear Waste Management and Nuclear Fuel Cycle, 2010,China

[66] Harman K M, Jansen G Jr. The salt cycle process, Progress in Nuclear Energy Series III, Process Chemistry, 1970,vol.4:429

[67] Bychkov A V, Vavilov S K, Porodnov P T, Skiba O V. Pyroelectrochemical Reprocessing of Irradiated Uranium-plutonium Oxide Fuel for Fast Reactors, Proc. of Global ’93, 1993,vol.2: 1351

[68] Ivanov V B, Mayorshin A A, Skiba O V. et a1.The Utilization of Plutonium in Nuclear Reactors on the Bases of Technologies,Developed in SSC RIAR, Proc.of Global ’97,1997,vol2: 1093

[69] Suzuki K,Namba T,Asou M,et a1. Feasibility Study of Pyrochemieal Recovery of Actinide from MOX Fuel, Proc.of Global’95,1995,vol2:1200

[70] Asou M,Hasuike T,Tamura S,et a1. A Modular Recycling Plant Concept, Flexible to Future Fuel Cycle Demands, Proc. of Global ’97, 1997,vol.2:894

[71] Aso M, Mizuguchi K, Shoji Y, Kobayashi T. Theoretical Evaluation of Decontamination Methods for Noble Metals in Oxide Electrowinning Process,Proc.of Global 2001, 2001

[72] Kani Y, Sasahira A, Hoshino K, Kawamura F. Journal of Fluorine Chemistry, 2009, 130(1):74-82

[73] Akai Y, Fujita R. J. Nucl. Sci. Technol., 1995, 33:1064-1066

[1] 叶国安, 张虎. 核燃料后处理技术发展及其放射化学问题[J]. 化学进展, 2011, 23(7): 1289-1294.
[2] 朱礼洋, 文明芬, 段五华, 徐景明, 朱永(贝睿). 超临界流体萃取技术在乏燃料后处理中的应用[J]. 化学进展, 2011, 23(7): 1308-1315.
[3] 张安运, 肖成梁, 柴之芳. 硅基超分子识别材料在乏燃料后处理中的研究进展[J]. 化学进展, 2011, 23(7): 1355-1365.
[4] 崔大庆. 综述KBS-3处置库近场还原性环境对处置安全的裨益[J]. 化学进展, 2011, 23(7): 1411-1428.
[5] 袁立永, 彭静, 翟茂林. 咪唑离子液体及其萃取体系的辐射效应研究[J]. 化学进展, 2011, 23(7): 1469-1477.
[6] 杨通在, 汪小琳. 国防领域放射分析化学研究进展[J]. 化学进展, 2011, 23(7): 1520-1526.