English
新闻公告
More
化学进展 2011, Vol. 23 Issue (6): 1165-1173 前一篇   后一篇

• 综述与评论 •

基于光响应高分子材料的柔性执行器件

王威1, 王晓振2, 程伏涛1, 俞燕蕾1*, 朱玉田2*   

  1. 1. 复旦大学材料科学系 上海 200433;
    2. 同济大学机械工程学院 上海201804
  • 收稿日期:2010-11-01 修回日期:2011-01-01 出版日期:2011-06-24 发布日期:2011-05-29
  • 作者简介:e-mail: ylyu@fudan.edu.cn; yutianzhu@tongji.edu.cn
  • 基金资助:

    国家高技术发展计划(863)项目(No.2007AA03Z105)、国家自然科学基金项目(No.50873028)和上海市自然科学基金项目(No.09ZR1434200)资助

Light-Driven Soft Actuators Based on Photoresponsive Polymer Materials

Wang Wei1, Wang Xiaozhen2, Cheng Futao1, Yu Yanlei1*, Zhu Yutian2*   

  1. 1. Department of Materials Science, Fudan University, Shanghai 200433, China;
    2. College of Mechanical Engineering, Tongji University, Shanghai 201804, China
  • Received:2010-11-01 Revised:2011-01-01 Online:2011-06-24 Published:2011-05-29

光响应高分子材料是指吸收光能后,能够在分子内或分子间产生化学或物理变化的一类功能高分子材料。伴随着分子结构与形态的改变,材料表现出某些宏观性质的变化,如在光刺激下发生形状、颜色或者折射率的变化等。光能具有环保性、远程可控性、瞬时性等优异的特性,因此光响应性高分子材料受到了越来越多的关注。通过合理的设计,光响应高分子材料可以产生光致形变或具有形状记忆功能,完成诸如伸缩、弯曲、爬行、转动等一些复杂的运动,并且可以制作成多种柔性智能执行器,在人工肌肉、微型机器人、微泵、微阀等领域有着广泛的应用前景。本文综述了近年来具有光响应特性的液晶高分子、凝胶以及形状记忆高分子等材料在光驱动型柔性执行器方面的研究进展,阐述了各种执行器的运行机理,并展望了该领域的发展前景。

Photoresponsive polymeric materials are a kind of functional polymers that can absorb photo energy and undergo intra- or inter-molecular physical or chemical transformations. Accompanying the changes on molecular structures and configurations, the materials exhibit the variations on certain macroscopic properties such as shape, color, or refractive index in response to light. Since light is an environment-friendly, remotely controllable and instantly operatable stimulus, photoresponsive polymers attract more and more attention. By rational design, photoresponsive polymers can generate light-driven deformations or have shape-memory properties, thus they have been led to undergo sophisticated movements such as contraction/expansion, bending, creeping, and rotation and further assembled to various smart soft actuators, which have wide applications in artificial muscles, microrobots, micropumps, microvalves and so on. This article summarizes the recent progress of light-driven soft actuators made of photoresponsive liquid crystal polymers, gels, and shape-memory polymers. Their driven mechanism and development prospect are also described.

中图分类号: 

()

[1] Chu L Y, Li Y, Zhu J H, Chen W M. Angew. Chem. Int. Ed., 2005, 44: 2124-2127
[2] Zhang Y, Kato S, Anazawa T. Sens. Actuators B, 2008, 129: 481-486
[3] Otero T F, Cortes M T. Adv. Mater., 2003, 15: 279-282
[4] Jager E W H, Inganasa O, Lundstrom I. Science, 2000, 288: 2335-2338
[5] Smela E. Adv. Mater., 2003, 15: 481-494
[6] Immerstrand C, Holmgen-peterson K, Magnusson K E, Jager E, Krogh M, Skoglund M, Selbing A, Inganas O. Mater. Res. Soc. Bull., 2002, 27: 461-464
[7] Sugiura S, Sumaru K, Ohi K, Hiroki K, Takagi T, Kanamori T. Sens. Actuators A, 2007, 140: 176-184
[8] Mudiyanselage T K,Neckers D C. Soft Matter, 2008, 4: 768-774
[9] Zhao Y-L, Stoddart J F. Langmuir, 2009, 25: 8442-8446
[10] Lendlein A, Jiang H Y, Junger O, Langer R. Nature, 2005, 434: 879-882
[11] Hribar K C, Metter R B, Ifkovits J L. Small, 2009, 5: 1830-1834
[12] Ikeda T, Nakano M, Yu Y L, Tsutsumi O, Kanazawa A. Adv. Mater., 2003, 15: 201-205
[13] Yu Y L, Nakano M, Shishido A, Shiono T, Ikeda T. Chem. Mater., 2004, 16: 1637-1643
[14] Kondo M, Yu Y L, Ikeda T. Angew. Chem. Int. Ed., 2006, 45: 1378-1382
[15] Yamada M, Kondo M, Mamiya J, Yu Y L, Kinoshita M, Barrett C J, Ikeda T. Angew. Chem. Int. Ed., 2008, 47: 4986-4988
[16] Yamada M, Kondo M, Miyasato R, Naka Y, Mamiya J, Kinoshita M, Shishido A, Yu Y L, Barrett C J, Ikeda T. J. Mater. Chem., 2009, 19: 60-62
[17] Yin R Y, Xu W X, Kondo M, Yen C C, Mamiya J, Ikeda T, Yu Y L. J. Mater. Chem., 2009, 19: 3141-3143
[18] Cheng F T, Zhang Y Y, Yin R Y, Yu Y L. J. Mater. Chem., 2010, 20: 4888-4896
[19] Cheng F T, Yin R Y, Zhang Y Y, Yen C C, Yu Y L. Soft Matter, 2010, 6: 3447-3449
[20] Chen M L, Xing X, Zhao L, Zhu Y T, Liu H, Yu Y L, Cheng F T. J. Applied Phys. A, 2010, 100: 39-43
[21] Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Nature Mater., 2004, 3: 307-310
[22] Hrozhyk U, Serak S, Tabiryan N. Optics Express, 2009, 17: 716-722
[23] White T J, Tabiryan N, Serak S, Hrozhyk U, Tondiglia V, Koerner H, Vaia R, Bunning T. Soft Matter, 2008, 4: 1796-1798
[24] White T J, Serak S, Tabiryan N, Vaia R, Bunning T. J. Mater. Chem., 2009, 19: 1080-1085
[25] Choi H J, Jeong K U, Chien L C, Lee M H. J. Mater. Chem., 2009, 19: 7124-7129
[26] Van Oosten C L, Bastiaansen C W M, Broer D J. Nature Mater., 2009, 8: 677-682

[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[4] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[5] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[6] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[7] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[8] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[9] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[10] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[11] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[12] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[13] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[14] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[15] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.