English
新闻公告
More
化学进展 2011, Vol. 23 Issue (6): 1100-1107 前一篇   后一篇

• 综述与评论 •

荧光磁性纳米复合颗粒的制备及研究进展

周慧睿, 陶可, 孙康*   

  1. 上海交通大学 金属基复合材料国家重点实验室 上海 200240
  • 收稿日期:2010-10-01 修回日期:2010-12-01 出版日期:2011-06-24 发布日期:2011-05-29
  • 作者简介:e-mail:ksun@sjtu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.50902093,No.20904032)资助

Synthesis and Perspectives of Fluorescent-Magnetic Nanocomposites

Zhou Huirui, Tao Ke, Sun Kang*   

  1. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2010-10-01 Revised:2010-12-01 Online:2011-06-24 Published:2011-05-29

荧光磁性纳米复合颗粒同时具备荧光发射和磁响应双功能,在生物医用领域展现出巨大的应用潜力,因而近年来受到广大研究者的高度关注。本文综述了荧光磁性纳米复合颗粒的主要制备方法,将其归类为包覆法、偶联法和种晶生长法三种策略,评述了这三种策略的优缺点,提出了当前研究工作中需要解决的问题,并对今后的研究发展方向进行了展望。

Fluorescent-magnetic nanocomposites have attracted intensive research interest owing to their great potentials in biomedical applications. In this review, we summarized the recent advancements in the synthesis of fluorescent-magnetic nanocomposites and generalized them into encapsulating, coupling and seed-growth approaches. Additionally, the challenges of the synthesis and applications of fluorescent-magnetic nanocomposites are discussed, as well as the developing trends.

中图分类号: 

()

[1] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115(19): 8706-8715
[2] Leatherdale C A, Woo W K, Mikulec F V, Bawendi M G. J. Phys. Chem. B, 2002, 106(31): 7619-7622
[3] Murphy C J. Anal. Chem., 2002, 74: 520A-526A
[4] Parak W J, Gerion D, Pellegrino T, Znachet D, Micheel G, Williams S C, Boudreu R, LeGros M A, Larabell C A, Alivisatos A P. Nanotech., 2003, 14: 15-27
[5] Niemeyer C M. Angew. Chem. Int. Ed. Eng., 2001, 40: 4128-4158
[6] Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G. J. Am. Chem. Soc., 2000, 122(49): 12142-12150
[7] Han M Y, Gao X H, Su J Z, Nie S M. Nature Biotechnology, 2001, 19: 631-635
[8] Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. Science, 2002, 298: 1759-1762
[9] Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. Nature Biotechnology, 2004, 22: 969-976
[10] Chan W C W, Maxwell D J, Gao X, Bailey R E, Han M, Nie S. Curr. Opin. Biotechnol., 2002, 13: 40-46
[11] Wu X Y, Liu H J, Liu J Q, Haley K N, Treadway J A, Larson J P, Ge N F, Peale F, Bruchez M P. Nat. Biotechnol., 2003, 21: 41-46
[12] Riegler J, Ehlert O, Nann T. Anal. Bioanal. Chem., 2006, 384: 645-650
[13] Pankhurst Q A, Connolly J, Jones S K, Dobson J. J. Phys. D: Appl. Phys., 2003, 36: R167-181
[14] Gupta A K, Curtis A S G. Biomaterials, 2004, 25: 3029-3040
[15] Doyle P S, Bibette J, Bancaud A, Viovy J L. Science, 2002, 295: 2237-2238
[16] Patolsky F, Weizmann Y, Katz E, Willner I. Angew. Chem., Int. Ed., 2003, 42: 2372-2376
[17] Rogers J, Lewis J, Josephson L. Invest. Radiol., 1994, 29: S81-S82
[18] Bulte J W M, Douglas T, Witwer B, Zhang S C, Strable E, Lewis B K, Zywicke H, Miller B, van Gelderen P, Moskowitz B M, Duncan I D, Frank J A. Nat. Biotech., 2001, 19: 1141-1147
[19] Mossbach K, Schrder U. FEBS Lett., 1979, 102: 112-116
[20] Lübbe A S, Alexiou C, Bergemann C. J. Surg. Res., 2001, 95: 200-206
[21] Lacava Z G M, Azevedo R B, Martins E V, Lacava L M, Freitas M L L, Garcia V A P, Rébula C A, Lemos A P C, Sousa M H, Tourinho F A. J. Magn. Magn. Mater., 1999, 201: 431-434
[22] Goodwin S, Peterson C, Hoh C, Bittner C. J. Magn. Magn. Mater., 1999, 194: 132-139
[23] Alexiou C, Arnold W, Klein R J, Parak F G, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe A S. Cancer Res., 2000, 60: 6641-6648
[24] Shinkai M. J. Biosci. Bioeng., 2002, 94: 606-613
[25] Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R. J. Magn. Magn. Mater. 1999, 194: 185-196
[26] 刘欣(Liu X), 郑成志(Zheng Z Z), 梁建功(Liang J G), 韩鹤友(Han H Y). 分析科学学报(Journal of Analytical Science), 2010, 26(2): 235-239
[27] 贾秋凌(Jia Q L), 王德平(Wand D P), 黄文旵(Huang W H), 周萘(Zhou N). 材料导报(Materials Reviews), 2006, 20(2): 30-32
[28] Yi D K, Selvan S T, Lee S S, Papaefthymiou G C, Kundaliya D, Ying J Y. J. Am. Chem. Soc., 2005, 127: 4990-4991
[29] Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Shin C-H, Park J-G, Kim J, Hyeon T. J. Am. Chem. Soc., 2006, 128: 688-689
[30] Xie H Y, Zuo C, Liu Y, Zhang Z L, Pang D W, Li X L, Gong J P, Dickinson C, Zhou W Z. Small, 2005, 1: 506-509
[31] Wang G P, Song E Q, Xie H Y, Zhang Z L, Tian Z Q, Zuo C, Pang D W, Wu D C, Shi Y B. Chem. Commun., 2005, 4276-4278
[32] Zhang P F, Dou H J, Li W W, Tao K, Xing B, Sun K. Chem. Lett., 2007, 36: 1458-1459
[33] Kim B S, Taton T A. Langmuir, 2007, 23: 2198-2202
[34] Kim B S, Qiu J M, Wang J P, Taton T A. Nano Lett., 2005, 5: 1987-1991
[35] Sathe T R, Agrawal A, Nie S M. Anal. Chem., 2006, 78: 5627-5632
[36] Guo J, Yang W L, Wang C C, He J, Chen J Y. Chem. Mater., 2006, 18: 5554-5562
[37] Salgueirino-Maceira V, Correa-Duarte M A, Spasova M, Liz-Marzan L M, Farle M. Adv. Funct. Mater., 2006, 16: 509-514
[38] Chen M H, Gao L, Yang S W, Sun J. Chem. Commun., 2007, 1272-1274
[39] Wang D, He J, Rosenzweig N, Rosenzweig Z. Nano Lett., 2004, 3: 409-413
[40] Guo W, Li J J, Wang Y A, Peng X. J. Am. Chem. Soc., 2003, 125: 3901-3909
[41] Wang Y A, Li J J, Chen H, Peng X. J. Am. Chem. Soc., 2002, 124: 2293-2298
[42] Rogach A L, Nagesha D, Ostrander J W, Giersig M, Kotov N A. Chem. Mater., 2000, 12: 2676-2685
[43] 林章碧(Lin Y B), 苏星光(Su X G), 张皓(Zhang H), 牟颖(Mou Y), 孙晔(Sun H), 胡海(Hu H), 杨柏(Yang B), 闫岗林(Yan G L), 罗贵民(Luo G M), 金钦汉(Jin Q H). 高等学校化学学报(Chemical Journal of Chinese University), 2003, 24: 216-220
[44] Gaponik N, Radtchenko I L, Sukhorukov G B, Rogach A L. Langmuir, 2004, 20: 1449-1452
[45] Hong X, Li J, Wang M J, Xu J, Guo W, Li J H, Bai Y B, Li T J. Chem. Mater., 2004, 16: 4022-4027
[46] Mokari T, Rothenberg E, Popov I, Costi R, Banin U. Science, 2004, 304: 1787-1790
[47] Shi W L, Zhen H, Sahoo Y, Ohulchanskyy T Y, Y. Ding, Wang Z L, Swihart M, Prasad P N. Nano Lett., 2006, 6: 875-881
[48] Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S H, Nano Lett., 2005, 5: 379-382
[49] Kim H, Achermann M, Balet L P, Hollingsworth J A, Klimov V I. J. Am. Chem. Soc., 2005, 127: 544-546
[50] Gu H W, Zheng R K, Zhang X X, Xu B. J. Am. Chem. Soc., 2004, 126: 5664-5665
[51] Gao J H, Zhang B, Gao Y, Pan Y, Zhang X X, Xu B. J. Am. Chem. Soc., 2007, 129: 11928-11935
[52] Zanella M, Falqui A, Kudera S, Manna L, Casula M F, Parak W J. J. Mater. Chem., 2008, 18: 4311-4317
[53] Kwon K W, Shim M. J. Am. Chem. Soc., 2005, 127: 10269-10275
[54] Kwon K W, Lee B H, Shim M. Chem. Mater., 2006, 18: 6357-6363
[55] McDaniel H, Shim M. ACS Nano, 2009, 3: 434-440
[56] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chem. Int. Ed., 2007, 46: 2448-2452
[57] Ang C Y, Giam L, Chan Z M, Lin A W H, Gu H, Devlin E, Papaefthymiou G C, Selvan S T, Ying J Y. Adv. Mater., 2009, 21: 869-873
[58] Gao J H, Zhang W, Huang P B, Zhang B, Zhang X X, Xu B. J. Am. Chem. Soc., 2008, 130: 3710-3711
[59] Tian Z Q, Zhang Z L, Gao J H, Huang B H, Xie H Y, Xie M, Abrua H D, Pang D W. Chem. Commun., 2009, 4025-4027
[60] Tian Z Q, Zhang Z L, Jiang P, Zhang M X, Xie H Y, Pang D W. Chem. Mater., 2009, 21: 3039-3041
[61] Tao K, Zhou H R, Dou H J, Xing B, Li W W, Sun K. J. Phys. Chem. C, 2009, 113: 8762-8766
[62] Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. J. Am. Chem. Soc., 1997, 119: 7019-7029
[63] Li J J, Wang Y A, Guo W Z, Keay J C, Mishima T D, Johnson M B, Peng X G. J. Am. Chem. Soc., 2003, 125: 12567-12575
[64] Leff D V, Ohara P C, Heath J R, Gelbart W M. J. Phys. Chem., 1995, 99: 7036-7041
[65] Mokari T, Sztrum C G, Salant A, Rabani E, Banin U. Nat. Mater., 2005, 4: 855-863
[66] Menagen G, Mocatta D, Salant A, Popov I, Dorfs D, Banin U. Chem. Mater., 2008, 20: 6900-6902
[67] Habas S E, Yang P, Mokari T. J. Am. Chem. Soc., 2008, 130: 3294-3295
[68] Kovalenko M V, Bodnarchuk M I, Lechner R T, Hesser G, Schffler F, Heiss W. J. Am. Chem. Soc., 2007, 129: 6352-6353
[69] Cozzoli P D, Snoeck E, Garcia M A, Giannini C, Guagliardi A, Cervellino A, Gozzo F, Hernando A, Achterhold K, Ciobanu N, Parak F G, Cingolani R, Manna L. Nano Lett., 2006, 6: 1966-1972
[70] Puzder A, Williamson A J, Zaitseva N, Galli G, Manna L, Alivisatos A P. Nano Lett., 2004, 4: 2361-2365
[71] Lu H C, Yi G S, Zhao S Y, Chen D P, Guo L H, Cheng J. J. Mater. Chem., 2004, 14: 1336-1341
[72] Zhang M F, Shi S J, Meng J X, Wang X Q, Fan H, Zhu Y C, Wang X Y, Qian Y T. J. Phys. Chem. C., 2008, 112: 2825-2830
[73] Shen J, Sun L D, Zhang Y W, Yan C H. Chem. Commun., 2010, 46: 5731-5733

[1] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[2] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[3] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[4] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[5] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[6] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[7] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[8] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[9] 徐彦乔, 陈婷, 王连军, 江伟辉, 江莞, 谢志翔. Ⅰ-Ⅲ-Ⅵ 族量子点的制备及其在照明显示领域的应用[J]. 化学进展, 2019, 31(9): 1238-1250.
[10] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[11] 朱本占, 沈忱, 盛治国. 膜受体介导双酚A低剂量内分泌干扰效应的分子机制[J]. 化学进展, 2019, 31(1): 167-179.
[12] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[13] 戴立信*. Ullmann反应百年纪念及近期复兴——兼及碳-杂原子键的形成[J]. 化学进展, 2018, 30(9): 1257-1297.
[14] 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 碳量子点激发依赖荧光特性的机理、调控及应用[J]. 化学进展, 2018, 30(8): 1186-1201.
[15] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.