English
新闻公告
More
化学进展 2011, Vol. 23 Issue (6): 1081-1089 前一篇   后一篇

• 综述与评论 •

核壳结构纳米复合材料的制备及应用

李广录1, 何涛1,2*, 李雪梅2*   

  1. 1. 南京工业大学材料化学工程国家重点实验室 南京 210009;
    2. 中国科学院上海高等研究院 上海 201203
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-06-24 发布日期:2011-05-29
  • 作者简介:e-mail:taohe@njut.edu.cn; afmgroup@126.com
  • 基金资助:

    国家重点基础研究发展规划(973)项目((2009CB623402),国家自然科学基金项目(20976083)和科技部中以联合项目2010年度项目资助。

Preparation and Applications of Core-Shell Structured Nanocomposite Materials: the State-of-the-Art

Li Guanglu1, He Tao1,2*, Li Xuemei2*   

  1. 1. State-Key Lab of Material Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China;
    2. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-06-24 Published:2011-05-29

核壳结构纳米复合材料由于独特的物理、化学特性和广泛的应用前景,近年来成为研究的热点。本文系统地综述了核壳结构纳米复合材料的类型,针对应用方向总结了核壳结构纳米复合材料的研究现状。系统地归纳了核壳结构纳米复合材料在光学、催化、医药与生物、光子晶体、超疏水涂层等方面的应用,评述了其特点和发展的方向, 并对其应用前景进行了展望。

The core-shell structured nano-composite materials showing novel physical and chemical properties have received much attention because of their potentials in applications. The progress in the preparation and applications of the core-shell structure nano-composites is reviewed with respect to their applications in optics, catalysis, pharmacy and biology, photonic crystal, and superhydrophobic coating. In the end, the problems and solutions are given for future development of core-shell nanocomposites materials.

中图分类号: 

()

[1] Kamata K, Lu Y, Xia Y. J. Am. Chem. Soc., 2003, 125: 2384-2385
[2] Fleming M S, Mandal T K, Walt D R. Chem. Mater., 2001, 13: 2210-2216
[3] 段涛(Duan T), 杨玉山 (Yang Y S), 彭同江 (Peng T J), 唐永建 (Tang Y J). 材料导报(Materials Review), 2009, 23: 19-23
[4] 张小塔(Zhang X T), 宋武林 (Song W L), 胡木林 (Hu M L), 谢长生 (Xie C S), 郭连贵 (Guo L G). 材料导报(Materials Review), 2006, 20: 209-211
[5] Latham A H, Williams M E. Acc. Chem. Res., 2008, 41: 411-420
[6] Wang X, Peng Q, Li Y. Acc. Chem. Res., 2007, 40: 635-643
[7] Tang D M, Liu G, Li F, Tan J, Liu C, Lu G Q, Cheng H M. J. Phys. Chem. C, 2009, 113: 11035-11040
[8] 刘丽 (Liu L), 路庆华(Lu Q H), 钱雪峰(Qian X F), 王宗光(Wang Z G). 合成橡胶工业(China Synthetic Rubber Industry), 2000, 23: 326-326
[9] Chen T H, Xu P, Luo Y Y, Jiang L, Dan Y, Zhang L, Zhao K. J. Appl. Polym. Sci., 2009, 114: 496-502
[10] Chaves C R, Fontes A, Farias P M A, Santos B S, De Menezes F D, Ferreira R C, Cesar C L, Galembeck A, Figueiredo R C B Q. Appl. Surf. Sci., 2008, 255: 728-730
[11] Lei M, Qian L Q, Hu Q R, Wang S L, Tang W H. J. Alloys Compd., 2009, 487: 568-571
[12] Kuang Q, Jiang Z Y, Xie Z X, Lin S C, Lin Z W, Xie S Y, Huang R B, Zheng L S. J. Am. Chem. Soc., 2005, 127: 11777-11784
[13] Suo B T, Su X, Wu J, Chen D, Wang A, Guo Z H. Mater. Chem. Phys., 2010, 119: 237-242
[14] Wen F, Zhang W Q, Wei G W, Wang Y, Zhang J Z, Zhang M C, Shi L Q. Chem. Mater., 2008, 20: 2144-2150
[15] Kim S W, Kim M, Lee W Y, Hyeon T. J. Am. Chem. Soc., 2002, 124: 7642-7643
[16] Yamada Y, Qiao K, Bao Q, Tomida D, Nagao D, Konno M, Yokoyama C. Catal. Commun., 2009, 11: 227-231
[17] Mandal S, Mandale A B, Sastry M. J. Mater. Chem., 2004, 14: 2868-2871
[18] Manivannan S, Ramaraj R. J. Chem. Sci., 2009, 121: 735-743
[19] Li X M, Huskens J, Reinhoudt D N. J. Am. Chem. Soc., 2003, 125: 4279-4284
[20] Sreedhar B, Radhika P, Neelima B, Hebalkar N. Chem. Asian J., 2008, 3: 1163-1169
[21] Ma Y, Zhang H, Zhong H, Xu T, Jin H, Geng X. Catal. Commun., 2010, 11: 434-437
[22] Strohm H, Lobmann P. J. Mater. Chem., 2004, 14: 138-140
[23] Strohm H, Lobmann P. J. Mater. Chem., 2004, 14: 2667-2673
[24] Singh J, Uma S. J. Phys. Chem. C, 2009, 113: 12483-12488
[25] Park H C W. J. Phys. Chem. B, 2005, 109: 11667-11674
[26] Lee J W, Othman M R, Eom Y, Lee T G, Kim W S, Kim J. Micropor. Mesopor. Mat., 2008, 116: 561-568
[27] Wang C L, Zhang H, Zhang J H, et al. J. Phys. l Chem. C, 2007, 111: 2465-2469
[28] Kato N, Caruso F. J. Phys. Chem. B, 2005, 109: 19604-19612
[29] Zhao J W, Wu L Z, Zhi J F. J. Mater. Chem., 2008, 18: 2459-2465
[30] Qi D W, Lu J, Deng C H, Zhang X M. J. Phys. Chem. C, 2009, 113: 15854-15861
[31] Ma Z, Dosev D, Nichkova M, Dumas R K, Gee S J, Hammock B D, Liu K, Kennedy I M. J. Magn. Magn. Mater., 2009, 321: 1368-1371
[32] Bao F, Yao J L, Gu R A. Langmuir, 2009, 25: 10782-10787
[33] Lee J, Lee Y, Youn J K, Bin Na H, Yu T, Kim H, Lee S M, Koo Y M, Kwak J H, Park H G, Chang H N, Hwang M, Park J G, Kim J, Hyeon T. Small, 2008, 4: 143-152
[34] Guo X, Liu X, Xu B, Dou T. Colloid Surface A, 2009, 345: 141-146
[35] Yang X Y, Chen L T, Huang B, Bai F, Yang X L. Polymer, 2009, 50: 3556-3563
[36] Xuan S, Fang Q, Hao L, Jiang W, Gong X, Hu Y, Chen Z. J Colloid Interface Sci., 2007, 314: 502-509
[37] Deng Y, Yang W, Wang C, Fu S. Adv. Mater., 2003, 15: 1729-1732
[38] Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J. Biomaterials, 2009, 30: 4786-4795
[39] Yan W, Feng X, Chen X, Li X, Zhu JJ. Bioelectrochemistry, 2008, 72: 21-27
[40] Xiong H M, Xu Y, Ren O G, Xia Y Y. J. Am. Chem. Soc., 2008, 130: 7522-7523
[41] Li Y, Sun Z, Zhang J, Zhang K, Wang Y, Wang Z, Chen X, Zhu S, Yang B. J. Colloid Interface Sci., 2008, 325: 567-572
[42] Wang W, Asher S A. J. Am. Chem. Soc., 2001, 123: 12528-12535
[43] Wang D Y, Rogach A L, Caruso F. Chem. Mater., 2003, 15: 2724-2729
[44] Zhu Y J, Qian Y T, Li X J. Chem. Commun., 1997, 1081-1082
[45] Rogach A, Susha A, Caruso F, Sukhorukov G, Kornowski A, Kershaw S, Mhwald H, Eychmüller A, Weller H. Adv. Mater., 2000, 12: 333-337
[46] Jiang L Y, Leu C M, Wei K H. Adv. Mater., 2002, 14: 426-429
[47] Wang J J, Sun L, Mpoukouvalas K, Lienkamp K, Lieberwirth I, Fassbender B, Bonaccurso E, Brunklaus G, Muehlebach A, Beierlein T, Tilch R, Butt H J, Wegner G. Adv. Mater., 2009, 21: 1137-1141
[48] Wang G X, Shen X P, Yao J N, Wexler D, Ahn J. Electrochem. Commun., 2009, 11: 546-549
[49] Jia H, Xu H, Hu Y, Tang Y, Zhang L. Electrochem. Commun., 2007, 9: 354-360
[50] Yang C, Liu P. Synthetic Met., 2009, 159: 2056-2062
[51] Cheng Y C, Guo J J, Xu G J, Cui P, Liu X H, Liu F H, Wu J H. Colloid Polym. Sci., 2008, 286: 1493-1497
[52] Wenzel R N. Ind. Eng. Chem., 1936, 28: 988-994
[53] Neinhuis C B W. Ann. Bot., 1997, 79, 667-677
[54] Cassie A B D, Baxter S. Trans. Farady Soc., 1944, 40: 546-551
[55] Feng L, Zhang Y A, Xi J M. Langmuir, 2008, 24: 4114-4119
[56] Nakajima A, Abe K, Hashimoto K. Thin Solid Films, 2000, 376: 140-143
[57] Furmidge C G L. J. Colloid Sci., 1962, 17: 309-324
[58] Li X M, Reinhoudt D N, Crego-Calama M. Chem. Soc. Rev., 2007, 36: 1350-1368
[59] Li X M, He T, Crego-Calama M, Reinhoudt D N. Langmuir, 2008, 24: 8008-8012
[60] Shang H M, Wang Y, J. Thin Solid Films, 2005, 472: 37-43
[61] Shiu J K C, Chen P, Mou C. Chem. Mater., 2004, 16: 561-564
[62] Zhai L, Cebeci F , Cohen R E, Rubner M F. Nano Lett., 2004, 4: 1349-1353
[63] Zhai Y M, Zhai J F, Zhou M, Dong S J. J. Mater. Chem., 2009, 19: 7030-7035

[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[4] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[5] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[6] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.
[7] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[8] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[9] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[10] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[11] 张东杰, 张丛筠, 卢亚, 郝耀武, 刘亚青. 种子生长法制备Au@Ag核壳纳米粒子[J]. 化学进展, 2015, 27(8): 1057-1064.
[12] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[13] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[14] 周素坤, 毛健贞, 许凤. 微纤化纤维素的制备及应用[J]. 化学进展, 2014, 26(10): 1752-1762.
[15] 仇实, 郑景伟, 杨贵堂, 郑经堂, 吴明铂, 吴文婷. 三维有序大孔炭的设计构筑、性能及应用研究[J]. 化学进展, 2014, 26(05): 772-783.