English
新闻公告
More
化学进展 2011, Vol. 23 Issue (6): 1060-1068 前一篇   后一篇

• 综述与评论 •

三维胶体光子晶体对光的调控与应用研究

李珩1, 王京霞2, 王荣明1*, 宋延林2*   

  1. 1. 北京航空航天大学,物理科学与核能工程学院 微纳测控与低维物理教育部重点实验室 北京 100191;
    2. 中国科学院化学研究所 新材料实验室 北京 100190
  • 收稿日期:2010-10-01 修回日期:2011-01-01 出版日期:2011-06-24 发布日期:2011-05-29
  • 作者简介:e-mail:ylsong@iccas.ac.cn; rmwang@buaa.edu.cn
  • 基金资助:

    国家自然科学基金项目 (No.50971011,50973117,21074139,20721061),北京市自然科学基金项目(No. 1102025),高等学校博士学科点专项科研基金项目(20091102110038),博士创新基金(YWF-10-02-407)资助

Optical Manipulation and Application by Three Dimensional Colloidal Photonic Crystals

Li Heng1, Wang Jingxia2, Wang Rongming1*, Song Yanlin2*   

  1. 1. Key Laboratory of Micro-nano Measurement-Manipulation and Physics, Ministry of Education, Physics Department, Beijing University of Aeronautics and Astronautics, Beijing 100191;
    2. Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2010-10-01 Revised:2011-01-01 Online:2011-06-24 Published:2011-05-29

21世纪在光子技术领域中操控光子已成为核心的研究内容。胶体光子晶体因其特殊的周期结构而具有光子禁带的特性,从而可以对特定频率的光进行调控,其应用涵盖了光、电、催化、传感、显示、检测等众多领域,为光功能材料的结构设计和性能优化提供了参考依据。本文主要从两个方面阐述近年来胶体光子晶体对光的调控作用与应用,一方面,光子晶体的光子禁带受外界环境刺激下的调控,其核心是在光子晶体中填充响应性的材料,从而引起光子晶体晶格常数或折光指数的变化,这在化学及生物传感器技术领域有着广阔的应用前景;另一方面,光子晶体对嵌入在其中的发射物质的光学行为能实现有效的控制,这将有力地推动光学器件的发展。文章最后还对胶体光子晶体的今后的发展进行了展望。

Manipulation of photons has become the core studies in area of photonics in the 21th century. Colloidal photonic crystals (CPC), with the characteristic of photonic stopband due to their periodic structures, can control the propagation of light in a certain direction, which show applications in optics, electronics, catalysis, display, detection and so on. Furthermore, CPC can offer the guidance for designing structures and optimizing propertied of optical functional materials. In this paper, the recent achievements on applications in this field are presented from two aspects. On the one hand, the optical manipulation of photonic crystals is based on changing the stopband characteristics through variation of the refractive index or the lattice constant by applying external stimuli, which provides a promising strategy to develop the technology in chemical sensors and biosensors. On the other hand, the optical behavior can be effectively controlled based on emitters embedded in PCs, which promotes the development of optical devices. Finally, this paper brings forward perspectives toward in-depth investigation of colloidal photonic crystals.

中图分类号: 

()

[1] Yablonovitch E. Phys. Rev. Lett., 1987, 58(20): 2059-2062
[2] John S. Phys. Rev. Lett., 1987, 58(23): 2486-2489
[3] Tarhan I I, Watson G H. Phys. Rev. Lett., 1996, 76(2): 315-318
[4] Wang Z L, Chan C T, Zhang W Y, Chen Z, Ming N B, Sheng P. Phys. Rev. E, 2003, 67: art. no. 016612
[5] 段廷蕊(Duan T R), 李海华(Li H H), 孟子晖(Meng Z H), 刘烽(Liu F), 都明君(Du M J). 化学通报(Chemistry), 2009, 72 (4): 298
[6] Chen J I L, von Freymann G, Choi S Y, Kitaev V, Ozin G A. J. Mater. Chem., 2008, 18 (4): 369-373
[7] Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Appl. Phys. Lett., 1999, 74 (10): 1370-1372
[8] Notomi M. Physical Review B, 2000, 62 (16): 10696-10705
[9] Weissman J M, Sunkara H B, Tse A S, Asher S A. Science, 1996, 274 (5289): 959-960
[10] Lee K, Asher S A. J. Am. Chem. Soc., 2000, 122(39): 9534-9537
[11] Fudouzi H, Xia Y N. Adv. Mater., 2003, 15(11): 892-896
[12] Debord J D, Eustis S, Debord S B, Lofye M T, Lyon L A. Adv. Mater., 2002, 14(9): 658-662
[13] Arsenault A C, Clark T J, Von Freymann G, Cademartiri L, Sapienza R, Bertolotti J, Vekris E, Wong S, Kitaev V, Manners I, Wang R Z, John S, Wiersma D, Ozin G A. Nat. Mater., 2006, 5(3): 179-184
[14] Ozaki M, Shimoda Y, Kasano M, Yoshino K. Adv. Mater., 2002, 14(7): 514-518
[15] Ge J P, Hu Y X, Yin Y D. Angew. Chem. Int. Ed., 2007, 46(39): 7428-7431
[16] Tian E T, Wang J X, Zheng Y M, Song Y L, Jiang L, Zhu D B. J. Mater. Chem., 2008, 18(10): 1116-1122
[17] Li H L, Wang J X, Yang L M, Song Y L. Adv. Funct. Mater., 2008, 18 (20): 3258-3264
[18] Li H L, Chang L X, Wang J X, Yang L M, Song Y L. J. Mater. Chem., 2008, 18(42): 5098-5103
[19] Xu L, Wang J X, Song Y L, Jiang L. Chem. Mater., 2008, 20(11): 3554-3556
[20] Purcell E M. Phys. Rev., 1946, 69: 681-681
[21] Yablonovitch E, Gmitter T J. Phys. Rev. Lett., 1989, 63(18): 1950-1953
[22] Martorell J, Lawandy N M. Phys. Rev. Lett., 1990, 65(15): 1877-1880
[23] Wang X H, Wang R Z, Gu B Y, Yang G Z. Phys. Rev. Lett., 2002, 88(9): art. no. 093902
[24] Schriemer H P, van Driel H. M, Koenderink A F, Vos W L. Phys. Rev. A, 2000, 63(1): art. no. 011801
[25] Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D L, Vos W L. Nature, 2004, 430(7000): 654-657
[26] Bechger L, Lodahl P, Vos W L. J. Phys. Chem. B, 2005, 109(20): 9980-9988
[27] Maskaly G R, Petruska M A, Nanda J, Bezel I V, Schaller R D, Htoon H, Pietryga J M, Klimov V I. Adv. Mater., 2006, 18(3): 343-347
[28] de Dood M J A, Polman A, Fleming J G. Phys. Rev. B, 2003, 67(11): art. no. 115106
[29] Ganesh N, Zhang W, Mathias P C, Chow E, Soares J, Malyarchuk V, Smith A D, Cunningham B T. Nature Nanotechnology, 2007, 2(8): 515-520
[30] Blum C, Mosk A P, Nikolaev I S, Subramaniam V, Vos W L. Small, 2008, 4 (4): 492-496
[31] Jensen J B, Hoiby P E, Emiliyanov G, Bang O, Pedersen L H, Bjarklev A. Opt. Express, 2005, 13(15): 5883-5889
[32] Kim H J, Kim S, Jeon H, Ma J, Choi S H, Lee S, Ko C, Park W. Sensors and Actuators B-Chemical, 2007, 124(1): 147-152
[33] 刘兆斌(Liu Z B), 赵祥伟(Zhao X W), 张帅(Zhang S), 顾忠泽(Gu Z Z). 化学学报(Acta Chimica Sinica), 2008, 66(2): 229-233
[34] Li J L, Zhao X W, Wei H M, Gu Z Z, Lu Z H. Anal. Chim. Acta, 2008, 625(1): 63-69
[35] Li J, Zhao X W, Zhao Y J, Hu J, Xu M, Gu Z Z. J. Mater. Chem., 2009, 19(36): 6492-6497
[36] Li M Z, He F, Liao Q, Liu J, Xu L, Jiang L, Song Y L, Wang S, Zhu D B. Angew. Chem. Int. Ed., 2008, 47(38): 7258-7262
[37] Ye J Y, Ishikawa M, Yamane Y, Tsurumachi N, Nakatsuka H. Appl. Phys. Lett., 1999, 75 (23): 3605-3607
[38] Zhang Y Q, Wang J X, Ji Z Y, Hu W P, Jiang L, Song Y L, Zhu D B. J. Mater. Chem., 2007, 17(1): 90-94
[39] Li M Z, Liao Q, Liu Y, Li Z Y, Wang J X, Jiang L, Song Y L. Applied Physics A-Materials Science & Processing, 2010, 98(1): 85-90
[40] Andrew P, Barnes W L. Science, 2004, 306(5698): 1002-1005
[41] Li M Z, Liao Q, Zhang J P, Jiang L, Song Y L, Zhu D B, Chen D, Tang F Q, Wang X H. Appl. Phys. Lett., 2007, 91(20): art. no. 203516
[42] Li H, Wang J X, Lin H, Xu L, Xu W, Wang R M, Song Y L, Zhu D B. Adv. Mater., 2010, 22(11): 1237-1241
[43] Furumi S, Fudouzi H, Miyazaki H. T, Sakka Y. Adv. Mater., 2007, 19(16): 2067-2072
[44] Shkunov M N, Vardeny Z V, DeLong M C, Polson R C, Zakhidov A A, Baughman R H. Adv. Funct. Mater., 2002, 12(1): 21-26
[45] Lawrence J R, Ying Y R, Jiang P, Foulger S H. Adv. Mater., 2006, 18 (3): 300-303
[46] Jin F, Song Y, Dong X Z, Chen W Q, Duan X M. Appl. Phys. Lett., 2007, 91(3): art. no. 031109
[47] Yamada H, Nakamura T, Yamada Y, Yano K. Adv. Mater., 2009, 21 (41): 4134-4138
[48] Braun P V, Wiltzius P. Nature, 1999, 402(6762): 603-604
[49] Johnson S A, Ollivier P J, Mallouk T. E. Science, 1999, 283 (5404): 963-965
[50] Chen J I L, von Freymann G, Choi S Y, Kitaev V, Ozin G A. Adv. Mater., 2006, 18(14): 1915-1919
[51] Liu J, Li M Z, Wang J X, Song, Y L, Jiang L, Murakami T, Fujishima A. Environ. Sci. Technol., 2009, 43(24): 9425-9431
[52] Liu J, Liu G L, Li M Z, Shen W Z, Liu Z Y, Wang J X, Zhao J C, Jiang L, Song Y L. Energy & Environmental Science, 2010, 3(10): 1503-1506
[53] Nishimura S, Abrams N, Lewis B A, Halaoui L I, Mallouk T E, Benkstein K D, van de Lagemaat J, Frank A J. J. Am. Chem. Soc., 2003, 125(20): 6306-6310
[54] Mihi A, Miguez H. J. Phys. Chem. B, 2005, 109 (33): 15968-15976
[55] Mihi A, Lopez-Alcaraz F J, Miguez H. Appl. Phys. Lett., 2006, 88(19): art. no. 193110
[56] Huisman C L, Schoonman J, Goossens A. Sol. Energy Mater. Sol. Cells, 2005, 85(1): 115-124
[57] Wang D Y, Mhwald H. Adv. Mater., 2004, 16(3): 244-247
[58] Mihi A, Ocana M, Miguez H. Adv. Mater., 2006, 18(17): 2244-2249
[59] Cui L Y, Zhang Y Z, Wang J X, Ren Y B, Song Y L, Jiang L. Macromol. Rapid. Commun., 2009, 30(8): 598-603.

[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[4] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[5] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[6] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[9] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[10] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[11] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[12] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[13] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[14] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[15] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.