English
新闻公告
More
化学进展 2011, Vol. 23 Issue (5): 974-982 前一篇   后一篇

• 综述与评论 •

基于G-四链体结构多态性的核酸纳米技术

郑琳, 王宪, 张金利,李鍏   

  1. 天津大学化工学院 天津 300072
  • 收稿日期:2010-08-01 修回日期:2010-10-01 出版日期:2011-05-24 发布日期:2011-05-04
  • 基金资助:

    国家自然科学基金项目(No.20776102,20836005)和教育部博士点基金项目资助

DNA Nanotechnology Based on Polymorphic G-Quadruplex

Zheng Lin, Wang Xian, Zhang Jinli, Li Wei   

  1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2010-08-01 Revised:2010-10-01 Online:2011-05-24 Published:2011-05-04

G-四链体是由富G核酸形成的独特四链螺旋结构,区别于遵循A-T、G-C碱基互补配对原则形成的传统Watson-Crick双链结构。基于G-四链体的特异分子识别特性,能够引导纳米粒子的有序组装、赋予纳米器件以刺激-响应功能,使得核酸纳米技术领域的内容更丰富多样。本文介绍了G-四链体的结构多态性,从纳米材料组装和纳米器件设计两个方面综述了基于G-四链体结构转变的核酸纳米技术,并对其研究前景进行了展望。

Guanine (G)-rich oligonucleotides can self-assemble into polymorphic G-quadruplexes via stacking of G-quartets which are a biologically relevant alternative of the classical Watson-Crick double helix. Unique molecular recognition properties of G-quadruplex can be utilized to induce orderly organizing of nanoparticles and design nanodevices with stimulu-response functions, which have promising applications in DNA nanotechnology. This article introduced the polymorphism of G-quadruplexes and reviewed the DNA nanotechnology based on structural transition of G-quadruplex, especially focusing on nanomaterials self-organization and nanodevices design, and then illustrated the prospects of its development trend.

中图分类号: 

()

[1] Seeman N C. J. Theor. Biol., 1982, 99: 237-247
[2] Seeman N C, Kallenbach N R. Biophys. J., 1983, 44: 201-209
[3] Seeman N C. J. Biomol. Struct. Dyn., 1985, 3: 11-34
[4] Chen J H, Seeman N C. Nature, 1991, 350: 631-633
[5] Winfree E, Liu F R, Wenzler L A, Seeman N C. Nature, 1998, 394: 539-544
[6] LaBean T H, Yan H, Kopatsch J, Liu F R, Winfree E, Reif J H, Seeman N C. J. Am. Chem. Soc., 2000, 122: 1848-1860
[7] Le J D, Pinto Y, Seeman N C, Musier-Forsyth K, Taton T A, Kiehl R A. Nano Lett., 2004, 4: 2343-2347
[8] Zheng J W, Constantinou P E, Micheel C, Alivisatos A P, Kiehl R A, Seeman N C. Nano Lett., 2006, 6: 1502-1504
[9] Zheng J P, Birktoft J J, Chen Y, Wang T, Sha R J, Constantinou P E, Ginell S L, Mao C D, Seeman N C. Nature, 2009, 461: 74-77
[10] Ma R I, Kallenbach N R, Sheardy R D, Petrillo M L, Seeman N C. Nucleic Acids Res., 1986, 14: 9745-9753
[11] Churchill M E, Tullius T D, Kallenbach N R, Seeman N C. Proc. Nat. Acad. Sci. USA, 1988, 85: 4653-4656
[12] Lin C, Liu Y, Yan H. Biochemistry, 2009, 48: 1663-1674
[13] Aldaye F A, Palmer A L, Sleiman H F. Science, 2008, 321: 1795-1799
[14] Yan H. Science, 2004, 306: 2048-2049
[15] 蔡苗(Cai M), 王强斌(Wang Q B). 化学进展(Progress in Chemistry), 2010, 22 (5): 975-982
[16] 杨洋(Yang Y), 柳华杰(Liu H J), 刘冬生(Liu D S). 化学进展(Progress in Chemistry), 2008, 20 (2/3): 197-207
[17] 蒋晓华(Jiang X H), 刘伟强(Liu W Q), 陈建军(Chen J J), 林祥钦(Lin X Q). 化学进展(Progress in Chemistry), 2007, 19 (4): 608-613
[18] Gellert M, Lipsett M N, Davies D R. Proc. Nat. Acad. Sci. USA, 1962, 48: 2013-2018
[19] Neidle S, Balasubramanian S. Quadruplex Nucleic Acids. (1st ed.). Cambridge: RSC Publishing, 2006. 1-8
[20] Dapic V, Abdomerovic V, Marrington R, Peberdy J, Rodger A, Trent J O, Bates P J. Nucleic Acids Res., 2003, 31: 2097-2107
[21] Xu Y, Noguchi Y, Sugiyama H. Bioorg. Med. Chem., 2006, 14: 4484-5591
[22] Guschlbauer W, Chantot J F, Thiele D. J. Biomol. Struct. Dyn., 1990, 8: 491-511
[23] Smirnov I V, Shafer R H. Biopolymers, 2007, 85: 91-101
[24] Li W, Wu P, Ohmichi T, Sugimoto N. FEBS Lett., 2002, 526: 77-81
[25] Li W, Miyoshi D, Nakano S, Sugimoto N. Biochemistry, 2003, 42: 11736-11744
[26] Wang Y, Patel D J. Structure, 1993, 1: 263-282
[27] Ambrus A, Chen D, Dai J X, Bialis T, Jones R A, Yang D Z. Nucleic Acids Res., 2006, 34: 2723-2735
[28] Phan A T, Kuryavyi V, Luu K N, Patel D J. Nucleic Acids Res., 2007, 35: 6517-6525
[29] Zhang J L, Fu Y, Zheng L, Li W, Li H, Sun Q, Xiao Y, Geng F. Nucleic Acids Res., 2009, 37: 2471-2482
[30] Haider S M, Parkinson G N, Neidle S. J. Mol. Biol., 2003, 326: 117-125
[31] Miyoshi D, Nakao A, Sugimoto N. Nucleic Acids Res., 2003, 31: 1156-1163
[32] Miyoshi D, Nakao A, Toda T, Sugimoto N. FEBS Lett., 2001, 496: 128-133
[33] Vorlickova M, Bednarova K, Kypr J. Biopolymers, 2006, 82: 253-260
[34] Xue Y, Kan Z Y, Wang Q, Yao Y, Liu J, Hao Y H, Tan Z. J. Am. Chem. Soc., 2007, 239: 11185-11191
[35] Miyoshi D, Matsumura S, Nakano S, Sugimoto N. J. Am. Chem. Soc., 2004, 126: 165-169
[36] Miyoshi D, Nakao A, Sugimoto N. Biochemistry, 2002, 41: 15017-15024
[37] Henderson E, Hardin C C, Walk S K, Tinoco I J, Blackburn E H. Cell, 1987, 51: 899-908
[38] Sen D, Gilbert W. Nature, 1988, 334: 364-366
[39] Qin Y, Hurley L H. Biochimie, 2008, 90: 1149-1171
[40] Huppert J L, Balasubramanian S. Nucleic Acids Res., 2007, 35: 406-413
[41] Franceschin M. Eur. J. Org. Chem., 2009, 2225-2238
[42] Li W, Zhang M, Zhang J L, Li H Q, Zhang X C, Sun Q, Qiu C M. FEBS Lett., 2006, 580: 4905-4910
[43] 谭嘉恒(Tan J H). 中山大学博士论文(Doctoral Dissertation of Zhongshan University), 2008
[44] 田明月(Tian M Y), 张秀凤(Zhang X F), 潘然(Pan R), 赵长琦(Zhao C Q), 唐亚林(Tang Y L). 化学进展(Progress in Chemistry), 2010, 22(5): 983-992
[45] Li H, Liu Y, Lin S, Yuan G. Chem. Eur. J., 2009, 15: 2445-2452
[46] Rezler E M, Seenisamy J, Bashyam S, Kim M Y, White E, Wilson W D, Hurley L H. J. Am. Chem. Soc., 2005, 127: 9439-9447
[47] Rodriguez R, Pantos G D, Goncalves D P N, Sanders J K M, Balasubramanian S. Angew. Chem. Int. Ed., 2007, 46: 5405-5407
[48] Laughlan G, Murchie A I, Norman D G, Moore M H, Moody P C, Lilley D M, Luisi B. Science, 1994, 265: 520-524
[49] Phillips K, Dauter Z, Murchie A I H, Lilley D M J, Luisi B J. J. Mater. Biol., 1997, 273: 171-182
[50] Davis J T. Angew. Chem. Int. Ed., 2004, 43: 668-698
[51] Marsh T C, Henderson E. Biochemistry, 1994, 33: 10718-10724
[52] Marsh T C, Vesenka J, Henderson E. Nucleic Acids Res., 1995, 23: 696-700
[53] Kotlyar A B, Borovok N, Molotsky T, Cohen H, Shapir E, Porath D. Adv. Mater., 2005, 17: 1901-1905
[54] Batalia M A, Protozanova E, Macgregor R B, Erie D A. Nano Lett., 2002, 2: 269-274
[55] Biyani M, Nishigaki K. Gene, 2005, 364: 130-138
[56] Protozanova E, Macgregor R B. Biophys. Chem., 1998, 75: 249-257
[57] Protozanova E, Macgregor R B. Biochemistry, 1996, 35: 16638-16645
[58] Protozanova E, MacGregor R B. Biophys. J., 1998, 75: 982-989
[59] Weglarz M, Vesenka J, Fritzsche W, Yerkes S, Kmiec E. Analysis of G-5x Quadruplex DNA (Eds. Fritzsche W, Bier F). Jena: American Institute of Physics, 2008. 123-128
[60] Zhou C Q, Tan Z K, Wang C, Wei Z Q, Wang Z G, Bai C L, Qin J F, Cao E H. J. Biomol. Struct. Dyn., 2001, 18: 807-812
[61] Li Z, Mirkin C A. J. Am. Chem. Soc., 2005, 127: 11568-11569
[62] Seela F, Jawalekar A M, Chi L F, Zhong D Y. Chem. Biodivers., 2005, 2: 84-91
[63] Mohammadzadegan R, Mohabatkar H, Sheikhi M H, Safavi A, Khajouee M B. Physica E, 2008, 41: 142-145
[64] Berti L, Alessandrini A, Menozzi C, Facci P. J. Nanosci. Nanotechnol., 2006, 6: 2382-2385
[65] Richter J, Seidel R, Kirsch R, Mertig M, Pompe W, Plaschke J, Schackert H K. Adv. Mater., 2000, 12: 507-510
[66] Nguyen K, Monteverde M, Lyonnais S, Campidelli S, Bourgoin J P, Filoramo A. DNA-Templated Pd Conductive Metallic Nanowires (Eds. Fritzsche W, Bier F). Jena: American Institute of Physics, 2008. 65-72
[67] 王振兴(Wang Z X). 博士学位论文(Doctoral Dissertation of University of Science and Technology of China), 2009
[68] Ford W E, Harnack O, Yasuda A, Wessels J M. Adv. Mater., 2001, 13: 1793-1797
[69] Kudo H, Fujihira M. IEEE Trans. Nanotechnol., 2006, 5: 90-92
[70] Monson C F, Woolley A T. Nano Lett., 2003, 3: 359-363
[71] Gu Q, Cheng C D, Haynie D T. Nanotechnology, 2005, 16: 1358-1363
[72] Coffer J L, Bigham S R, Pinizzoto R F. Nanotechnology, 1992, 3: 69-76
[73] Dittmer W U, Simmel F C. Appl. Phys. Lett., 2004, 85: 633-635
[74] Nyamjav D, Ivanisevic A. Biomaterials, 2005, 26: 2749-2757
[75] Fujikawa S, Takaki R, Kunitake T. Langmuir, 2005, 21: 8899-8904
[76] Berti L, Alessandrini A, Bellesia M, Facci P. Langmuir, 2007, 23: 10891-10892
[77] Berti L, Burley G A. Nat. Nanotechnol., 2008, 3: 81-87
[78] Houlton A, Pike A R, Galindo M A, Horrocks B R. Chem. Commun., 2009, 1797-1806
[79] Sengupta B, Springer K, Buckman J G, Story S P, Abe O H, Hasan Z W, Prudowsky Z D, Rudisill S E, Degtyareva N N, Petty J T. J. Phys. Chem. C, 2009, 113: 19518-19524
[80] Zheng L, Zhang R C, Ni Y X, Wang X, Zhang J L, Li W. Catal. Lett., 2010, 139: 145-150
[81] Arnal-Herault C, Banu A, Barboiu M, Michau M, van der Lee A. Angew. Chem. Int. Ed., 2007, 46: 4268-4272
[82] Numata M, Sugiyasu K, Hasegawa T, Shinkai S. Angew. Chem. Int. Ed., 2004, 43: 3279-3283
[83] Jin C Y, Qiu H B, Han L, Shu M H, Che S A. Chem. Commun., 2009, 3407-3409
[84] Zhang J L, Zheng L, Wang X, Xiao Y, Lu Y, Li W. Mater. Res. Bull., 2010, 45: 1954-1959
[85] Li J W J, Tan W H. Nano Lett., 2002, 2: 315-318
[86] Alberti P, Mergny J L. Proc. Nat. Acad. Sci. USA, 2003, 100: 1569-1573
[87] Harris D C, Chu X, Jayawickramarajah J. J. Am. Chem. Soc., 2008, 130: 14950-14951
[88] Dittmer W U, Reuter A, Simmel F C. Angew. Chem. Int. Ed., 2004, 43: 3550-3553
[89] Ueyama H, Takagi M, Takenaka S. J. Am. Chem. Soc., 2002, 124: 14286-14287
[90] Nagatoishi S, Nojima T, Juskowiak B, Takenaka S. Angew. Chem. Int. Ed., 2005, 44: 5067-5070
[91] Nagatoishi S, Nojima T, Galezowska E, Juskowiak B, Takenaka S. ChemBioChem, 2006, 7: 1730-1737
[92] He F, Tang Y L, Wang S, Li Y L, Zhu D B. J. Am. Chem. Soc., 2005, 127: 12343-12346
[93] Radi A E, O'Sullivan C K. Chem. Commun., 2006, 3432-3434
[94] Wang L H, Liu X F, Hu X F, Song S P, Fan C H. Chem. Commun., 2006, 3780-3782
[95] Huang C C, Chang H T. Chem. Commun., 2008, 1461-1463
[96] Lee J, Kim H J, Kim J. J. Am. Chem. Soc., 2008, 130: 5010-5011
[97] Li T, Wang E, Dong S J. Chem. Commun., 2009, 580-582
[98] Miyoshi D, Inoue M, Sugimoto N. Angew. Chem. Int. Ed., 2006, 45: 7716-7719
[99] Li T, Wang E, Dong S J. J. Am. Chem. Soc., 2009, 131: 15082-15083

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[9] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[10] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[13] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[14] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[15] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.