English
新闻公告
More
化学进展 2011, Vol. 23 Issue (5): 963-973 前一篇   后一篇

• 综述与评论 •

人工氧载体研究进展

殷晓春, 王荣民, 何玉凤, 朱永峰, 裴菲   

  1. 西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室 甘肃省高分子材料重点实验室 兰州 730070
  • 收稿日期:2010-08-01 修回日期:2010-10-01 出版日期:2011-05-24 发布日期:2011-05-04
  • 基金资助:

    教育部新世纪优秀人才支持计划和国家自然科学基金项目(No. 20964002,20804031)资助

Artificial Oxygen Carriers

Yin Xiaochun, Wang Rongmin, He Yufeng, Zhu Yongfeng, Pei Fei   

  1. Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2010-08-01 Revised:2010-10-01 Online:2011-05-24 Published:2011-05-04

血液需求的激增和异体输血的不安全性等问题的出现,促使人们合成“血液替代品”。通过对天然氧载体(即血红蛋白)结构与性能的清晰认识,已有多种人工氧载体被成功合成,并应用于临床试验。人工氧载体可分为全氟碳化合物、血红蛋白基氧载体、合成血红素及其高分子配合物三大类。全氟碳化合物虽大部分已退出人工血液市场,但因其具有治疗作用,研究工作仍在进行。为了降低血红蛋白基氧载体的副作用,已采用多种方法对血红蛋白进行改性,如采用化学修饰、微囊包裹(HbV)、重组和仿生纳米等技术。其中,血红蛋白囊泡模拟红细胞的结构,其粒径相对较大(250nm),副作用相对较低,是目前血红蛋白基氧载体的发展趋势。人工合成血红素如栏式卟啉只溶于有机溶剂,为增加其水溶性,可使其与白蛋白、木糖醇酶和环糊精等高分子结合为配合物,经动物实验表明,这些高分子金属配合物在体内具有运送氧气功能。除主要在临床上用作血液代替品外,人工氧载体还在肿瘤治疗、器官移植和缺血/再灌注损伤的预防等方面具有重要的临床应用价值。

Because of the increasing demand for blood and the emergence of unsafe issues in allogeneic blood transfusion, blood substitutes are attracting increasing interest in chemistry and medical science. Based on the knowledge of the structure and functions of hemoglobin-a typical natural oxygen carrier, many artificial oxygen carriers have been synthesized and applied to clinical trails. Artificial oxygen carriers include perfluorocarbon, hemoglobin-based oxygen carrier, synthetic heme and its polymer metal complexes. Although most of the perfluorocarbons could not be applied as blood substitutes, their applications as medicine are still continued because of their therapeutic effect. In order to reduce unwanted side-effects of hemoglobin-based oxygen carriers, hemoglobin has been modified by many methods, such as chemical modification, microencapsulation, recombinant technology, biomimetic nanotechnology, etc. Among all of the above hemoglobin-based oxygen carriers, the particle size of hemoglobin vesicles (HbV) is relatively larger in the simulation of the structure of the red blood cell. It represents one of the tendency of the progress of hemoglobin-based oxygen carriers. Most of synthetic hemes, such as pocket porphyrin metal complexes, are only dissolved in organic solvents. In order to increase their water-solubility, synthetic hemes have been conjugated with albumin, xylitol enzymes and cyclodextrin and so on. The results of animal trial showed that these polymer metal complexes could transport dioxygen in the animal body. Beside to be used as the blood substitutes in clinical trails, artificial oxygen carriers have other potential clinical uses, such as cancer therapy, organ transplantation and prevention of ischemia/reperfusion injury of tissues and organs.

中图分类号: 

()

[1] Kobayashi K, Tsuchida E, Horinouchi H. Artificial Oxygen Carrier. Tokyo: Springer, 2005. 1-18
[2] Klein H G. Transfusion Medicine. Blood Substitutes(ed. Winslow R M). London: Academic Press, 2006. 17-41
[3] 黄宇彬 (Huang Y B), 景遐斌 (Jing X B), 石全 (Shi Q), 孙静 (Sun J), 陈学思(Chen X S). 中国医疗器械信息(China Medcial Device Information), 2009, 15(5): 5-10
[4] Tsuchida E. Blood Substitutes, Present and Future Perspectives (ed. Tsuchida E). Amsterdam: Elsevier, 1998, 1-15
[5] Petz L D, Kleinmann S, Swisher S N, Spence R K, Strauss R G. Clinial Practice of Transfusion Medicine. 3rd ed. NY: Churchill Livingstone, 1996. 563-579
[6] Lu X L, Zheng C Y, Shi X D, Wang Y Q, Suo X Y, Yu P Z, Xu Y H, Ma T M, Su Z G. Artif. Cells. Blood. Substit. Immobil. Biotechnol., 2005, 33(2): 83- 99
[7] Zhu X L, Chu W, Fan D D, Dan N, Chen C, Wang T W, Wang F. Artificial Cells, Blood Substitutes and Biotechnology, 2007, 35(5): 518-532
[8] Huang Y B, Jing X W, Chen X S. New Type of Oxygen Transport boby-Polymer/ Micronano-particles of Hemoglobin. Chengdu: Chinese Biomaterials Congress, 2010, S8-1-1
[9] Scholer M, Frietsch T, Jambor C, Knels R. Dtsch. Med. Wochenschr., 2010, 135(12): 575-581
[10] 王红梅(Wang H M), 王保龙(Wang B L), 姚萍(Yao P), 苏虹(Su H). 临床输血与检验(J. Clin. Transfus. Lab. Med.), 2005, 7(4): 314-317
[11] 路秀玲(Lu X L). 生物工程学报(Chinese Journal of Biotechnology), 2006, 22(1): 7-18
[12] 王雁峰(Wang Y F), 潘继伦(Pan J L), 俞耀庭(Yu Y T). 生物医学工程学杂志(J. Biomed. Eng.), 2004, 21(3): 490-494
[13] Chang T M S. Blood Substitutes:Principle,Methods,Products and Clinical Trials. Basel: Karger Publisher, 1997. 216-231.
[14] Paoli M, Liddington R, Tame J, Wilkinson A, Dodson G. J. Mol. Biol., 1996, 256(4): 775-792
[15] 査锡良(Zha X L), 周春燕(Zhou C Y). 生物化学(Biochemistry). 北京: 人民卫生出版社(Beijing: People's Health Publisher), 2009, 26-28
[16] Daltrop O, Ferguson S J. J. Biol. Chem., 2004, 279(44): 45347-45353
[17] 王荣民(Wang R M), 朱永峰(Zhu Y F), 何玉凤(He Y F), 李岩(Li Y), 毛崇武(Mao C W), 何乃普(He N P). 化学进展(Prog. Chem. ), 2010, 22: 1952-1963
[18] Clark LC, Gollan F. Science, 1966, 152(730): 1755-1756
[19] Geyer R, Monroe R, Taylor K. Fed. Proc., 1968. 27: 384
[20] Ohyanagi H, Toshima K, Sekita M, Okamoto M, Itoh T, Mitsuno T. Clin. Ther., 1979, 2: 306-312
[21] Maevsky E I, Ivanitsky G R, Makarov K N, Arkhipov V V, Ivashina A I, Kulakova G M, Moroz V V, Pushkin S J, Senina R Y, Starovoitova L N. US 6562872, 2003
[22] Maevsky E I, Ivanitsky H R, Islamov S B, Moroz V V, Bogdanova L A, Karmen N B, Pushkin S Y, Maslennikov I A. Blood Substitutes (ed. Winslow RM). London: Academic Press, 2006. 289-295
[23] Maevsky E I, Axenova O G, Moroz V V, Senina R, Pushkin S, Ivanitsky G. Vestnik Sluzhby Krovi Russ, 2001, 4: 23-29
[24] Keipert P E. Blood Subtitutes(ed. Winslow RM). London: Academic Press, 2006. 312- 321
[25] Riess J G. Vox. Sang., 1991, 61(4): 225-239
[26] Keipert P E. Art. Cells Blood Subs. Immob Biotechnol., 1995, 23: 381- 394
[27] 郑志风(Zheng Z F), 徐宏(Xu H), 董岩(Dong Y), 古宏晨(Gu H C). 化学世界(Chemistry Word), 2001, 42(8): 43-45
[28] Bauer J, Zahres M, Zellermann A, Kirsch M, Petrat F, de Groot H, Mayer C. J. Microencapsul., 2010, 27(2): 122-132
[29] Thomas T G. NY Med. J., 1878, 27: 449-465
[30] Moldovan J. Dtsch. Med. Wochenschr., 1910, 2: 2422-2425
[31] Amberson W R, Mulder A G, Steggerda F R, Flexner J, Pankratz D S. Science, 1933, 78(2014): 106-107
[32] 万英(Wan Y), 周剑涛(Zhou J T). 中国生化药物杂志(Chinese Journal of Biochemical Pharmaceutics), 2004, 25(3): 178- 180
[33] Chatterjee R, Welty E V, Walder R Y, Pruitt S L, Rogers P H, Arnone A, Walder J A. J. Biol. Chem., 1986, 261(21): 9929-9937.
[34] Kobayashi K, Tsuchida E, Horinouchi H. Artificial Oxygen Carrier. Tokoy: Springer, 2005. 38-49
[35] Bunn H F, Jandl J H. Trans. Assoc. Am. Physicians, 1968, 81: 147-152
[36] 路秀玲(Lu X L), 郑春杨(Zheng C Y), 徐宇红(Xu Y H), 苏志国(Su Z G). 中国科学(生命科学)(Science in China (Life Sciences)), 2004, 34(4): 350-359
[37] Winslow R M (Ed). Blood Substitutes. London: Academic Press, 2006, 386-398
[38] Bonsen P, Laver M B, Morris K C. US 4001200, 1975
[39] Humphries R G, Killingback P G, Mann J, Sempik J, Wilson J. Br. J. Pharmacol., 1981, 74: 266
[40] Scholer M, Frietsch T, Jambor C, Knels R. Dtsch. Med. Wochenschr., 2010, 135(12): 575-581
[41] Nolte D, Steinhauser P, Pickelmann S, Berger S, Hrtl R, Messmer K. J. Lab. Clin. Med., 1997, 130(3): 328-338
[42] Thompson A, McGarry A E, Valeri C R, Liberthal W. J. Appl. Physiol., 1994, 77(5): 2348-2354
[43] Johnson J L, Moore E E, Offner P J, Haenel J B, Hides G A, Tamura D Y. Am. J. Surg., 1998, 176(6): 612-617
[44] Gould S A, Sehgal L R, Sehgal H L, Moss G S. Transfusion Science, 1995, 16(1): 5-17
[45] Zheng C Y, Bi J X, Ma G H, Su Z G. Artificial Cells, Blood Substitutes and Biotechnology, 2007, 35: 568-584
[46] Vandegriff K, Bellelli A, Samaja M, Malavalli A, Brunori M, Winslow R M. FASEB J., 2003, 17: A183-A183
[47] Vandegriff K D, Malavalli A, Wooldridge J, Lohman J, Winslow R M. Transfusion, 2003, 43(4): 509-516
[48] Lui F E, Kluger R. Biochemistry, 2009, 48(50): 11912-11919
[49] De Figueiredo L F, Mathru M, Solanki D, Macdonald V W, Hess J, Kramer G C. J. Trauma., 1997, 42(5): 847-854
[50] Burhop K, Gordon D, Estep T. Artif. Cells Blood Substit. Immobil. Biotechnol., 2004, 32(3): 353-374
[51] Natanson C, Kern S J, Lurie P, Banks S M, Wolfe S M. JAMA, 2008, 299(19): 2304-2312
[52] 王昕(Wang X), 赵树铭(Zhao S M). 国际检验医学杂志(International Journal of Laboratory Medicine)2008, 29(5): 418-420
[53] Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Artificial Organs, 2009, 33(2): 139-145
[54] Rudolph A S, Klipper R W, Goins B, Phillips W T. Proc. Natl. Acad. Sci. USA, 1991, 88(23): 10976-10980
[55] 赵健(Zhao J), 单晓茜(Shan X Q), 盛燕(Sheng Y), 吴凡(Wu F), 袁媛(Yuan Y), 刘昌胜(Liu C S). 生物医学工程学杂志(J. Biomed. Eng.), 2008, 25(3): 584-588
[56] Kobayashi K, Tsuchida E, Horinouchi H. Artificial Oxygen Carrier, Tokyo: Springer, 2005, 135-160
[57] Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. J. Intern. Med., 2008, 263(1): 4-15
[58] Pape A, Kertscho H, Meier J, Horn O, Laout M, Steche M, Lossen M, Theisen A, Zwissler B, Habler O. Intensive Care Med., 2008, 34(8): 1534-1543
[59] Abe H, Azuma H, Yamaguchi M, Fujihara M, Ikeda H, Sakai H, Takeoka S, Tsuchida E. Artif. Cells Blood Substit. Immobil. Biotechnol., 2007, 35(2): 157-172
[60] Sakai H, Tomiyama KI, Sou K, Takeoka S, Tsuchida E. Bioconjug. Chem., 2000, 11(3): 425-432
[61] Sakai H, Hara H, Yuasa M, Tsai AG, Takeoka S, Tsuchida E, Intaglietta M. Am J. Physiol. Heart. Circ. Physiol., 2000, 279(3): H908-H915
[62] Sakai H, Sou K, Horinouchi H, Kobayashi K, Tsuchida E. Adv. Exp. Med. Biol., 2010, 662: 433-438
[63] Izumi Y, Sakai H, Kose T, Hamada K, Takeoka S, Yoshizu A, Horinouchi H, Kato R, Nishide H, Tsuchida E, Kobayashi K. ASAIO J., 1997, 43(4): 289-297
[64] Linberg R, Conover C D, Shum K L, Shorr R G. In Vivo, 1998, 12(2): 167-173
[65] Plock J A, Tromp A E, Contaldo C, Spanholtz T, Sinovcic D, Sakai H, Tsuchida E, Leunig M, Banic A, Erni D. Crit. Care Med., 2007, 35(3): 899- 905
[66] Horinouchi H, Sakai H, Izumi Y, Kohno M, Tsuchida E, Kobayashi K. ISBT Science Series, 2009, 4: 409-410
[67] Looker D, Abbott-Brown D, Cozart P, Durfee S, Hoffman S, Mathews A J, Miller-Roehrich J, Shoemaker S, Trimble S, Fermi G, Komiyama N H, Nagai K, Stetler G L. Nature, 1992, 356: 258-260
[68] Kobayashi K, Tsuchida E, Horinouchi H. Artificial Oxygen Carrier. Tokyo: Springer, 2005, 127-134
[69] Chang T M. Wiley Interdiscip Rev. Nanomed Nanobiotechnol., 2010, 2(4): 418-430
[70] Chauvierre C, Manchanda R, Labarre D, Vauthier C, Marden M C, Leclerc L. Biomaterials, 2010, 31(23): 6069-6074
[71] Mot A C, Roman A, Lupan I, Kurtz D M Jr. Silaghi-Dumitrescu R. Protein J. 2010, 29(6): 387-393
[72] Tsuchida E, Nishide H, Ohno H. Artif. Cell. Artif. Organ., 1988, 16(1/3): 313-319.
[73] Collman J P, Gagne R R, Halbert T R, Marchon J C, Reed C A. J. Am. Chem. Soc., 1973, 95(23): 7868-7870
[74] Collman J P. Acc. Chem. Res., 1977, 10: 265-272
[75] Riess J G. Chem. Rev., 2001, 101: 2797-2919
[76] Komatsu T, Matsukawa Y, Tsuchida E. Bioconjugate Chem., 2001, 12(1): 71-75
[77] Cameron J H, Graham S, Harvey B H, Liggat J J, McKee A, Soutar I, Scott E L. React. Funct. Polym., 1998, 36(2): 173-183
[78] Nakagawa A, Komatsu T, Iizuka M, Tsuchida E. Bioconjugate Chem., 2008, 19(3): 581-584
[79] Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K. Bioconjugate Chem., 2009, 20 (8): 1419-1440
[80] Tsuchida E, Komatsu T, Hamamatsu K, Matsukawa Y, Tajima A, Yoshizu A, Izumi Y, Kobayashi K. Bioconjugate Chem., 2000, 11(1): 46-50
[81] Komatsu T, Hamamatsu K, Tsuchida E. Macromolecules, 1999, 32(25): 8388-8391
[82] Huang Y, Komatsua T, Yamamoto H, Horinouchi H, Kobayashi K, Tsuchida E. Biomaterials, 2006, 27(25): 4477-4483
[83] Wang R M, Komatsu T, Nakagawa A, Tsuchida E. Bioconjugate Chem., 2005, 16(1) : 23-26
[84] Komatsu T, Ishihara S, Tsuchida E, Nishide H, Morokuma C, Nakamura S. Biomacromolecules, 2005, 6(3): 1489-1494
[85] Kano K, Kitagishi H, Kodera M, Hirota S. Angew. Chem. Int. Ed., 2005, 44: 435-438
[86] Kano K, Kitagishi H, Dagallier C, Kodera M, Matsuo T, Hayashi T, Hisaeda Y, Hirota S. Inorg. Chem., 2006, 45(11): 4448-4460
[87] Kano K, Kitagishi H, Mabuchi T, Kodera M, Hirota S. Chem. Asian J., 2006, 1(3): 358-366
[88] Kano K, Kitagishi H, Tanaka S. J. Incl. Phenom. Macro. Chem., 2006, 56: 69-74
[89] Chen J Y, Scerbo M, Kramer G. Clinics, 2009, 64(8): 803-813
[90] Lok C. Nature, 2001, 410(15): 855
[91] Cabrales P. J. Am. Coll. Surg., 2010, 210(3): 271-279
[92] Donahue L L, Shapira I, Shander A, Kolitz J, Allen S, Greenburg G. Transfusion. 2010, 50(7): 1561-1567
[93] Squires J E. Science, 2002, 295(5557): 1002-1005
[94] Pierre L. . http: //biomed. brown. edu/Courses/BI108/2006- 108websites/group09artificialblood/index. htm
[95] Verdu E F, Bercik P, Huang X X, Lu J, Al-Mutawaly N, Sakai H, Tompkins T A, Croitoru K, Tsuchida E, Perdue M, Collins S M. Am. J. Physiol. Gastrointest Liver Physiol., 2008, 295(4): G664-G670
[96] Yamagishi T, Bessho M, Hama M, Katoh R, Yanagida S, Kusuhara M, Ohsuzu F. Artif. Blood, 2007, 14(3): 92-97
[97] Wu W, Li T, Liu J, Yang C. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(1): 3-6
[98] Lanza G M, Winter P M, Caruthers S D, Hughes M S, Hu G, Schmieder A H, Wickline S A. Angiogenesis, 2010, 13(2): 189-202
[99] Mahon R T, Watanabe T T, Wilson M C, Auker C R. Aviat. Space Environ. Med., 2010, 81(6): 555-559
[100] Zhang Z, He R, Yan K, Guo Q N, Lu Y G, Wang X X, Lei H, Li Z Y. Bioorg. Med. Chem. Lett., 2009, 19(23): 6675-6678

[1] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[2] 王荣民 朱永峰 何玉凤 李岩 毛崇武 何乃普. 金属卟啉蛋白质结合体的结构与功能*[J]. 化学进展, 2010, 22(10): 1952-1963.
[3] 杨再文,杨进,黄晓卷,唐宁,吴彪. 金属卟啉类超分子催化剂*[J]. 化学进展, 2009, 21(04): 588-599.
[4] 张建斌,张鹏燕,陈国华,韩芳,魏雄辉. 金属卟啉配合物与气体小分子的仿生作用研究[J]. 化学进展, 2009, 21(04): 771-776.
[5] 王荣民,赵明,何玉凤,郝二霞,申国瑞. 聚类卟啉金属配合物*[J]. 化学进展, 2007, 19(11): 1783-1790.
[6] 王兰芝,佘远斌,徐未未,张燕慧,纪红兵. 金属卟啉类模拟酶催化剂研究[J]. 化学进展, 2005, 17(04): 678-685.
[7] 陈志敏,左霞,吴谊群. 高密度可录光盘存储材料:金属卟啉配合物*[J]. 化学进展, 2004, 16(05): 820-.
[8] 李臻,夏春谷. 金属卟啉催化烯烃环氧化及反应机理研究*[J]. 化学进展, 2002, 14(05): 384-.
[9] 何宏山. 金属卟啉核酸定位断裂剂的设计及氧化断裂研究[J]. 化学进展, 2001, 13(03): 216-.
[10] 彭小彬,乐长高,蔡洁. 圆二色谱和诱导圆二色谱在卟啉及其配合物研究中的应用*[J]. 化学进展, 1999, 11(03): 327-.
阅读次数
全文


摘要

人工氧载体研究进展