English
新闻公告
More
化学进展 2011, Vol. 23 Issue (4): 800-809 前一篇   后一篇

• 综述与评论 •

纳米孔洞制备与单分子检测

林祥钦*, 李国霞   

  1. 中国科学技术大学化学系 合肥 230026
  • 收稿日期:2010-07-01 修回日期:2010-12-01 出版日期:2011-04-24 发布日期:2011-02-25
  • 通讯作者: e-mail:xqlin@ustc.edu.cn E-mail:xqlin@ustc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20575062)和中国科技大学研究生创新基金资助

Preparation and Application of Nanopores for Single Molecule Detection

Lin Xiangqin*, Li Guoxia   

  1. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received:2010-07-01 Revised:2010-12-01 Online:2011-04-24 Published:2011-02-25

利用电场驱动,让分子一个个地穿过一个纳米尺寸的孔洞而产生出电流脉冲响应信号,以此可以对分子计数。但分子识别的关键是选择性,因此纳米孔洞单分子检测是越过了传统上主要以分析物浓度为目标的测定,而在单个分子的检测灵敏度上,进一步提高选择性和识别能力,以及提高分析的通量,这为现代分析科学的发展开辟出了一个新的方向。迄今为止,已经使用了多种材料、采用多种技术来构建纳米孔洞,其中固体材料纳米孔洞显得更有优越性,因为可选的材料门类多,孔洞制作方法和孔洞表面的化学修饰方法也多种多样,还更容易安装使用。纳米孔洞单分子检测不仅能够对分子计数,还能对分子的构像进行识别(例如长度、手性、折叠情况等),特别在DNA和RNA的检测上更是引人注目,最终可能了解分子内部的结构,包括碱基的数量与排列的顺序等。纳米孔洞技术也不仅仅是一种分子传感工具,还可能演进为目的广泛的单分子操作的技术平台。本文从纳米孔洞单分子分析的原理出发,对现在主流的各种蛋白孔洞和固体材料纳米孔洞的制备、修饰与性能,以及在有机小分子、聚合物、蛋白、酶与生物分子复合物等方面的分析应用进行了介绍。

Based on the control of electrode potentials,individual molecules can be driving pass through nano-sized pores and give recognizable current pulse (or resistive pulse) signals for molecular counting and thus the lower detection limit of one molecule is well achieved.However,the selectivity besides molecular sizes is the key factor for molecular recognition in the field of single molecule detection.Up to now,in the modeling of nature protein pores,varies artificial nanopores have been prepared from different materials and by different techniques.The solid-state nanopores have shown superior advantages in artificially designable pore geometry and shape,versatility in surface chemical modification of the pore.The application of this technique in DNA and RNA detection is most fascinating,aiming at resolving of the composition and the internal structures of single molecules,such as the length,the number and the order of base pairs.It has been shown that the nanopore-based devices can provide not only the signals for single molecule sensing but rather a platform for individual molecule handling,on which a wide variety of analytical purposes could be achieved.This article firstly introduces the principle and classification of the nanopore analysis,then introduces the preparation and applications of varies nanopores,especially the artificial solid-state nanopores,surveying 130 references.

中图分类号: 

()

[1] Zlatanova J, van Holde K. Molecular Cell, 2006, 24(3): 317-329
[2] Griffiths J. Analytical Chemistry, 2008, 80(1): 23-27
[3] Healy K. Nanomedicine, 2007, 2(4): 459-481
[4] Vercoutere W, Akeson M. Current Opinion in Chemical Biology, 2002, 6(6): 816-822
[5] Deamer D W, Branton D. Accounts of Chemical Research, 2002, 35(10): 817-825
[6] Marziali A, Akeson M. Annual Review of Biomedical Engineering, 2001, 3: 195-223
[7] Zwolak M, Di Ventra M. Reviews of Modern Physics, 2008, 80(1): 141-165
[8] Muthukumar M. Annual Review of Biophysics and Biomolecular Structure, 2007, 36: 435-450
[9] Branton D, Deamer D W, Marziali A, Bayley H, Benner S A, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X H, Jovanovich S B, Krstic P S, Lindsay S, Ling X S S, Mastrangelo C H, Meller A, Oliver JS, Pershin YV, Ramsey J M, Riehn R, Soni G V, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss J A. Nature Biotechnology, 2008, 26(10): 1146-1153
[10] Dekker C. Nature Nanotechnology, 2007, 2(4): 209-215
[11] Healy K, Schiedt B, Morrison AP. Nanomedicine, 2007, 2(6): 875-897
[12] Bezrukov S M, Vodyanoy I, Parsegian V A. Nature, 1994, 370(6487): 279-281
[13] Rhee M, Burns MA. Trends in Biotechnology, 2007, 25(4): 174-181
[14] Bayley H, Martin C R. Chemical Reviews, 2000, 100(7): 2575-2594
[15] Hladky S B, Haydon D A. Nature, 1970, 225: 451-453
[16] Hume R I, Role L W, Fischbach G D. Nature, 1983, 305(5935): 632-634
[17] Allen T G J. Trends in Neurosciences, 1997, 20(5): 192-197
[18] Li G X, Lin X Q. Chinese Chemical Letter, 2010, 21(9): 1115-1118
[19] 李国霞(Li G X), 张志翔(Zhang Z X), 林祥钦(Lin X Q). 分析化学(Chinese Journal of Analytical Chemistry), 2010, 38(12): 1698-1702
[20] Howorka S, Siwy Z. Chemical Society Reviews, 2009, 38(8): 2360-2384
[21] Chen M, Khalid S, Sansom M S P, Bayley H. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(17): 6272-6277
[22] Butler T Z, Pavlenok M, Derrington I M, Niederweis M, Gundlach J H. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52): 20647-20652
[23] Gouaux J E, Braha O, Hobaugh M R, Song L Z, Cheley S, Shustak C, Bayley H. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(26): 12828-12831
[24] Braha O, Walker B, Cheley S, Kasianowicz J J, Song L Z, Gouaux J E, Bayley H. Chemistry & Biology, 1997, 4(7): 497-505
[25] Xie H Z, Braha O, Gu L Q, Cheley S, Bayley H. Chemistry & Biology, 2005, 12(1): 109-120
[26] Guan X Y, Gu L Q, Cheley S, Braha O, Bayley H. Chembiochem, 2005, 6(10): 1875-1881
[27] Korchev Y E, Bashford C L, Alder G M, Kasianowicz J J, Pasternak C A. Journal of Membrane Biology, 1995, 147(3): 233-239
[28] Bayley H, Braha O, Gu L Q. Advanced Materials, 2000, 12(2): 139-142
[29] Merzlyak P G, Capistrano M F P, Valeva A, Kasianowicz J J, Krasilnikov O V. Biophysical Journal, 2005, 89(5): 3059-3070
[30] Miedema H, Meter-Arkema A, Wierenga J, Tang J, Eisenberg B, Nonner W, Hektor H, Gillespie D, Meijberg W. Biophysical Journal, 2004, 87(5): 3137-3147
[31] Bayley H, Cremer P S. Nature, 2001, 413(6852): 226-230
[32] Conlan S, Zhang Y, Cheley S, Bayley H. Biochemistry, 2000, 39(39): 11845-11854
[33] Deme B, Marchal D. European Biophysics Journal with Biophysics Letters, 2005, 34(2): 170-179
[34] Hwang W L, Chen M, Cronin B, Holden M A, Bayley H. Journal of the American Chemical Society, 2008, 130(18): 5878-5879
[35] Li J, Stein D, McMullan C, Branton D, Aziz M J, Golovchenko J A. Nature, 2001, 412(6843): 166-169
[36] Litvinchuk S, Tanaka H, Miyatake T, Pasini D, Tanaka T, Bollot G, Mareda J, Matile S. Nature Materials, 2007, 6(8): 576-580
[37] Gu L Q, Braha O, Conlan S, Cheley S, Bayley H. Nature, 1999, 398(6729): 686-690
[38] Montal M, Mueller P. Proceedings of the National Academy of Sciences of the United States of America, 1972, 69(12): 3561-3566
[39] Holden M A, Bayley H. Journal of the American Chemical Society, 2005, 127(18): 6502-6503
[40] Holden M A, Jayasinghe L, Daltrop O, Mason A, Bayley H. Nature Chemical Biology, 2006, 2(6): 314-318
[41] Mayer M, Kriebel J K, Tosteson M T, Whitesides G M. Biophysical Journal, 2003, 85(4): 2684-2695
[42] White R J, Ervin E N, Yang T, Chen X, Daniel S, Cremer P S, White H S. Journal of the American Chemical Society, 2007, 129(38): 11766-11775
[43] Shenoy D K, Barger W R, Singh A, Panchal R G, Misakian M, Stanford V M, Kasianowicz J J. Nano Letters, 2005, 5(6): 1181-1185
[44] Jeon T J, Malmstadt N, Schmidt J J. Journal of the American Chemical Society, 2006, 128(1): 42-43
[45] Hromada L P, Nablo B J, Kasianowicz J J, Gaitan M A, DeVoe D L. Lab on a Chip, 2008, 8(4): 602-608
[46] Kang X F, Cheley S, Rice-Ficht A C, Bayley H. Journal of the American Chemical Society, 2007, 129(15): 4701-4705
[47] Shim J W, Gu L Q. Analytical Chemistry, 2007, 79(6): 2207-2213
[48] Atanasov V, Knorr N, Duran R S, Ingebrandt S, Offenhausser A, Knoll W, Koper I. Biophysical Journal, 2005, 89(3): 1780-1788
[49] Atanasov V, Atanasova P P, Vockenroth I K, Knorr N, Koper I. Bioconjugate Chemistry, 2006, 17(3): 631-637
[50] Andersson M, Keizer H M, Zhu C Y, Fine D, Dodabalapur A, Duran R S. Langmuir, 2007, 23(6): 2924-2927
[51] Drexler J, Steinem C. Journal of Physical Chemistry B, 2003, 107(40): 11245-11254
[52] Stein D, Li J, Golovchenko J A. Physical Review Letters, 2002, 89(27): art. no. 276106
[53] Cai Q, Ledden B, Krueger E, Golovchenko J A, Li J L. Journal of Applied Physics, 2006, 100(2): art. no. 024914
[54] Stein D M, McMullan C J, Li J L, Golovchenko J A. Review of Scientific Instruments, 2004, 75(4): 900-905
[55] Park S R, Peng H B, Ling X S S. Small, 2007, 3(1): 116-119
[56] Reimar S. US 4369370-A, 1983
[57] Harrell C C, Lee S B, Martin C R. Analytical Chemistry, 2003, 75(24): 6861-6867
[58] Harrell C C, Kohli P, Siwy Z, Martin C R. Journal of the American Chemical Society, 2004, 126(48): 15646-15647
[59] Apel P Y, Korchev Y E, Siwy Z, Spohr R, Yoshida M. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2001, 184(3): 337-346
[60] Siwy Z S. Advanced Functional Materials, 2006, 16(6): 735-746
[61] Siwy Z, Fulinski A. Physical Review Letters, 2002, 89(19): art. no. 198103
[62] Siwy Z, Apel P, Baur D, Dobrev D D, Korchev Y E, Neumann R, Spohr R, Trautmann C, Voss K O. Surface Science, 2003, 532: 1061-1066
[63] Siwy Z, Dobrev D, Neumann R, Trautmann C, Voss K. Applied Physics A-Materials Science & Processing, 2003, 76(5): 781-785
[64] Wharton J E, Jin P, Sexton L T, Horne L P, Sherrill S A, Mino W K, Martin C R. Small, 2007, 3(8): 1424-1430
[65] Siwy Z, Apel P, Dobrev D, Neumann R, Spohr R, Trautmann C, Voss K. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2003, 208: 143-148
[66] Umehara S, Pourmand N, Webb C D, Davis R W, Yasuda K, Karhanek M. Nano Letters, 2006, 6(11): 2486-2492
[67] Wei C, Bard A J, Feldberg S W. Analytical Chemistry, 1997, 69(22): 4627-4633
[68] Karhanek M, Kemp J T, Pourmand N, Davis R W, Webb C D. Nano Letters, 2005, 5(2): 403-407
[69] Parzefall F, Wilhelm R, Heckmann M, Dudel J. Journal of Physiology-London, 1998, 512(1): 181-188
[70] Korchev Y E, Bashford C L, Milovanovic M, Vodyanoy I, Lab M J. Biophysical Journal, 1997, 73(2): 653-658
[71] White R J, Zhang B, Daniel S, Tang J M, Ervin E N, Cremer P S, White H S. Langmuir, 2006, 22(25): 10777-10783
[72] Gao C L, Ding S, Tan Q L, Gu L Q. Analytical Chemistry, 2009, 81(1): 80-86
[73] Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Nature, 2010, 467(7312): 190-193
[74] Glezer E N, Milosavljevic M, Huang L, Finlay R J, Her T H, Callan J P, Mazur E. Optics Letters, 1996, 21(24): 2023-2025
[75] An R, Uram J D, Yusko E C, Ke K, Mayer M, Hunt A J. Optics Letters, 2008, 33(10): 1153-1155
[76] Saleh O A, Sohn L L. Nano Letters, 2003, 3(1): 37-38
[77] Smeets R M M, Dekker N H, Dekker C. Nanotechnology, 2009, 20(9): art. no. 095501
[78] Uram J D, Ke K, Mayer M. Acs Nano, 2008, 2(5): 857-872
[79] Smeets R M M, Keyser U F, Dekker N H, Dekker C. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 417-421
[80] Chen P, Mitsui T, Farmer D B, Golovchenko J, Gordon R G, Branton D. Nano Letters, 2004, 4(7): 1333-1337
[81] Heinemann S H, Teriau H, Stuhmer W, Imoto K, Numa S. Nature, 1992, 356(6368): 441-443
[82] Ramirez P, Aguilella-Arzo M, Alcaraz A, Cervera J, Aguilella V M. Cell Biochemistry and Biophysics, 2006, 44(2): 287-312
[83] Alcaraz A, Nestorovich E M, Aguilella-Arzo M, Aguilella V M, Bezrukov S M. Biophysical Journal, 2004, 87(2): 943-957
[84] Nilsson J, Lee J R I, Ratto T V, Letant S E. Advanced Materials, 2006, 18(4): 427-431
[85] Wanunu M, Meller A. Nano Letters, 2007, 7(6): 1580-1585
[86] Danelon C, Santschi C, Brugger J, Vogel H. Langmuir, 2006, 22(25): 10711-10715
[87] Grabarek Z, Gergely J. Analytical Biochemistry, 1990, 185(1): 131-135
[88] Vlassiouk I, Siwy Z S. Nano Letters, 2007, 7(3): 552-556
[89] Ali M, Schiedt B, Healy K, Neumann R, Ensinger A. Nanotechnology, 2008, 19(8): art. no. 085713
[90] Siwy Z, Fulinski A. American Journal of Physics, 2004, 72(5): 567-574
[91] Cervera J, Schiedt B, Neumann R, Mafe S, Ramirez P. Journal of Chemical Physics, 2006, 124(10): art. no. 104706
[92] Cervera J, Schiedt B, Ramirez P. Europhysics Letters, 2005, 71(1): 35-41
[93] White H S, Bund A. Langmuir, 2008, 24(5): 2212-2218
[94] Vlassiouk I, Smirnov S, Siwy Z. Acs Nano, 2008, 2(8): 1589-1602
[95] Ulman A. Chemical Reviews, 1996, 96(4): 1533-1554
[96] Kobayashi Y, Martin C R. Analytical Chemistry, 1999, 71(17): 3665-3672
[97] Jirage K B, Hulteen J C, Martin C R. Analytical Chemistry, 1999, 71(21): 4913-4918
[98] Martin C R, Nishizawa M, Jirage K, Kang M S, Lee S B. Advanced Materials, 2001, 13(18): 1351-1362
[99] Nishizawa M, Menon V P, Martin C R. Science, 1995, 268(5211): 700-702
[100] Jirage K B, Hulteen J C, Martin C R. Science, 1997, 278(5338): 655-658
[101] Schaffer C B, Brodeur A, Garcia J F, Mazur E. Optics Letters, 2001, 26(2): 93-95
[102] Uram J D, Ke K, Hunt A J, Mayer M. Angewandte Chemie-International Edition, 2006, 45(14): 2281-2285
[103] Wang G L, Zhang B, Wayment J R, Harris J M, White H S. Journal of the American Chemical Society, 2006, 128(23): 7679-7686
[104] Ding S, Gao C L, Gu L Q. Analytical Chemistry, 2009, 81(16): 6649-6655
[105] Wang G L, Bohaty A K, Zharov I, White H S. Journal of the American Chemical Society, 2006, 128(41): 13553-13558
[106] Fologea D, Gershow M, Ledden B, McNabb D S, Golovchenko J A, Li J L. Nano Letters, 2005, 5(10): 1905-1909
[107] Li J L, Gershow M, Stein D, Brandin E, Golovchenko J A. Nature Materials, 2003, 2(9): 611-615
[108] Heng J B, Ho C, Kim T, Timp R, Aksimentiev A, Grinkova Y V, Sligar S, Schulten K, Timp G. Biophysical Journal, 2004, 87(4): 2905-2911
[109] Chang H, Kosari F, Andreadakis G, Alam M A, Vasmatzis G, Bashir R. Nano Letters, 2004, 4(8): 1551-1556
[110] Harrell C C, Choi Y, Horne L P, Baker L A, Siwy Z S, Martin C R. Langmuir, 2006, 22(25): 10837-10843
[111] Mara A, Siwy Z, Trautmann C, Wan J, Kamme F. Nano Letters, 2004, 4(3): 497-501
[112] Bruckbauer A, Ying L M, Rothery A M, Zhou D J, Shevchuk A I, Abell C, Korchev Y E, Klenerman D. Journal of the American Chemical Society, 2002, 124(30): 8810-8811
[113] Wanunu M, Sutin J, McNally B, Chow A, Meller A. Biophysical Journal, 2008, 95(10): 4716-4725
[114] Kasianowicz J J, Brandin E, Branton D, Deamer D W. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(24): 13770-13773
[115] Storm A J, Chen J H, Zandbergen H W, Dekker C. Physical Review E, 2005, 71(5): art. no. 051903
[116] Storm A J, Storm C, Chen J H, Zandbergen H, Joanny J F, Dekker C. Nano Letters, 2005, 5(7): 1193-1197
[117] Chen P, Gu J J, Brandin E, Kim Y R, Wang Q, Branton D. Nano Letters, 2004, 4(11): 2293-2298
[118] Fan R, Karnik R, Yue M, Li D Y, Majumdar A, Yang P D. Nano Letters, 2005, 5(9): 1633-1637
[119] Smeets R M M, Keyser U F, Krapf D, Wu M Y, Dekker N H, Dekker C. Nano Letters, 2006, 6(1): 89-95
[120] Fologea D, Brandin E, Uplinger J, Branton D, Li J. Electrophoresis, 2007, 28(18): 3186-3192
[121] McNally B, Wanunu M, Meller A. Nano Letters, 2008, 8(10): 3418-3422
[122] Zhao Q, Comer J, Dimitrov V, Yemenicioglu S, Aksimentiev A, Timp G. Nucleic Acids Research, 2008, 36(5): 1532-1541
[123] Han A P, Schurmann G, Mondin G, Bitterli R A, Hegelbach N G, de Rooij N F, Staufer U. Applied Physics Letters, 2006, 88(9): art. no. 093901
[124] Fologea D, Ledden B, McNabb D S, Li J L. Applied Physics Letters, 2007, 91(5): art. no. 053901
[125] Saleh O A, Sohn L L. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(3): 820-824
[126] Sexton L T, Horne L P, Sherrill S A, Bishop G W, Baker L A, Martin C R. Journal of the American Chemical Society, 2007, 129(43): 13144-13152
[127] Valiyaveetil F I, Leonetti M, Muir T W, MacKinnon R. Science, 2006, 314(5801): 1004-1007
[128] Krasilnikov O V, Sabirov R Z, Ternovsky V I, Merzliak P G, Muratkhodjaev J N. Fems Microbiology Immunology, 1992, 105(1/3): 93-100
[129] Liu Y L, Zhao M Q, Bergbreiter D E, Crooks R M. Journal of the American Chemical Society, 1997, 119(37): 8720-8721
[130] Bruckbauer A, James P, Zhou D J, Yoon J W, Excell D, Korchev Y, Jones R, Klenerman D. Biophysical Journal, 2007, 93(9): 3120-3131

[1] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[2] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[3] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[4] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[5] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[6] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[7] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[8] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[9] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[10] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[11] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[12] 周倩, 李娜, 李坤, 余孝其. DNA中醛基嘧啶的化学检测[J]. 化学进展, 2020, 32(11): 1634-1650.
[13] 刘江波, 王丽华, 左小磊. 基于DNA的细胞膜功能化[J]. 化学进展, 2019, 31(8): 1067-1074.
[14] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[15] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
阅读次数
全文


摘要

纳米孔洞制备与单分子检测