English
新闻公告
More
化学进展 2011, Vol. 23 Issue (4): 750-759 前一篇   后一篇

• 综述与评论 •

静电纺丝法制备聚酰亚胺新型材料

龚光明1, 吴俊涛1*, 江雷1,2   

  1. 1. 北京航空航天大学化学与环境学院 仿生智能科学与技术研究中心 北京 100191;
    2. 中国科学院化学研究所 北京 100190
  • 收稿日期:2010-07-01 修回日期:2010-10-01 出版日期:2011-04-24 发布日期:2011-02-25
  • 通讯作者: e-mail:wjt@buaa.edu.cn E-mail:wjt@buaa.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2010CB934700)、国家自然科学基金项目(No. 51003004)和中央高校基本科研业务费专项资金(YWF-10-01-B16)资助

Novel Polyimide Materials Produced by Electrospinning

Gong Guangming1, Wu Juntao1*, Jiang Lei1,2   

  1. 1. Research Center for Biomimetic Smart Science and Technology, College of Chemistry and Environment, Beihang University, Beijing 100191, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2010-07-01 Revised:2010-10-01 Online:2011-04-24 Published:2011-02-25

静电纺丝(electrospinning)是一种制备纳米尺度连续长丝的便捷高效的纺丝技术,其应用前景相当广阔。聚酰亚胺(polyimide, PI)是一类具有广泛应用的耐高温、高强度、综合性能优异的高分子材料。近10年来,利用电纺制备PI新型材料的报道层出不穷,包括利用PI电纺纤维为前躯体制备碳纤维材料,电纺制备PI纳米复合材料,电纺制备轻质高强度PI材料等。本文对国内外关于此方面的研究进行了分类和详尽的综述,同时对电纺PI的发展方向作了展望。

Electrospinning provides a simple and versatile method for generating continuous ultra-thin fibers. The technique is not only a focus of intense academic investigation, but is also increasingly being applied in industry. Polyimide is a widely used polymer with high thermal stability, high toughness and comprehensive performances. In the last 10 years, reports on preparation of novel PI materials through electrospinning sprung out, including fabrication of carbon fibers by carbonizing the electrospun PI nano-fiber precursor, fabrication of electrospun PI fibrous nanocomposites, fabrication of light and tough electrospun PI fibrous materials, etc. This review summarizes the recent work in polyimide electrospinning. The research prospects and directions of this rapidly developing field are also briefly addressed.

中图分类号: 

()

[1] Li D, Xia Y. Adv. Mater., 2004, 16: 1151-1170
[2] Greiner A, Wendorff J H. Angew. Chem. Int. Ed., 2007, 46: 5670-5703
[3] Formalas A. US 1975504
[4] Doshi J, Reneker D H. J. Electrostat., 1995, 35: 151-160
[5] Reneker D H, Chun I. Nanotechnology, 1996, 7: 216-223
[6] Frenot A, Chronakis I S. Curr. Opin. Colloid Interface Sci., 2003, 8: 64-75
[7] Huang Z, Zhang Y, Kotaki M, Ramakrishna S. Compos. Sci. Technol., 2003, 63: 2223-2253
[8] Lu X, Wang C, Wei Y. Small, 2009, 5: 2349-2370
[9] Menini R, Farzaneh M. Polym. Int., 2008, 57: 77-84
[10] Li D, Wang Y, Xia Y. Nano Lett., 2004, 4: 933-938
[11] Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff J H. Adv. Mater., 2001, 13: 70-72
[12] McCann J, Marquez M, Xia Y. J. Am. Chem. Soc., 2006, 128: 1436-1437
[13] Hou H, Reneker D H. Adv. Mater., 2004, 16: 69-73
[14] Zhao Y, Cao X, Jiang L. J. Am. Chem. Soc., 2007, 129: 764-765
[15] Chen H, Song Y, Zhao Y, Jiang L. J. Am. Chem. Soc., 2008, 130: 7800-7801
[16] Schreuder-Gibson H, Gibson P, Senecal K, Sennett M, Walker J, Yeomans W, Ziegler D, Tsai P P. Adv. Mater., 2002, 34: 44-55
[17] Ramaseshan R, Sundarrajan S, Ramakrishna S, Liu Y. Nanotechnology, 2006, 17: 2947-2953
[18] Gibson P, Schreuder-Gibson H, Rivin D. Colloids Surf. A, 2001, 187/188: 469-481
[19] Matthews J A, Wnek G E, Simpson D G, Bowlin G L. Biomacromolecules, 2002, 3: 232-238
[20] Li M, Mondrinos M J, Gandhi M R, Ko F K, Weiss A S, Lelkes P I. Biomaterials, 2005, 26: 5999-6008
[21] Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff J H, Greiner A. Biomacromolecules, 2005, 6: 1484-1488
[22] Kenawy E R, Bowlin G L, Wnek G W. J. Controlled Release, 2002, 81: 57-64
[23] Xie J, Hsieh Y. J. Mater. Sci., 2003, 38: 2125-2133
[24] Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker D H, Wang P. Biotechnol. Prog., 2002, 18: 1027-1032
[25] Stasiak M, Roben C, Rosenberger N, Greiner A, Weendorff J H. Polymer, 2007, 48: 5208-5218
[26] Zhao Y, Jiang L. Adv. Mater., 2009, 21: 1-18
[27] Miyauchi Y, Ding B, Shiratori S. Nanotechnology, 2006, 17: 5151-5156
[28] Ma M, Mao Y, Gupta K K, Rutledge G C. Macromolecules, 2005, 38: 9742-9748
[29] Yoshio I, Rikio Y. Saishin Polyimide, Kiso To Ouyou, Tokyo: NTS Inc. Press, 2002. 1-36
[30] 王凯(Wang K), 詹茂盛(Zhan M S), 高生强(Gao S Q), 杨士勇(Yang S Y). 宇航材料工艺(Astronautic Materials & Technology), 2004, 3: 5-11
[31] Tamai S, Shibuya A, Yamaguchi A. Polymer, 2001, 42: 2373-2378
[32] 汪称意(Wang C Y), 李光(Li G), 江建明(Jiang J M), 杨胜林(Yang S L), 金俊弘(Jin J H). 化学进展(Progress in Chemistry), 2009, 21(1): 174-181
[33] Rogers F E. US 3356648, 1964
[34] Nah C, Han S H, Lee M H, Kim J S, Lee D S. Polym. Int., 2003, 52: 429-432
[35] 董建华(Dong J H) 主编.高分子科学前沿与进展Ⅱ(Frontier and Progress in Polymer Science),北京:科学出版社(Beijing: Science Press), 2009. 624-638
[36] Yang K S, Edie D D, Choi Y O. Carbon, 2003, 41: 2039-2046
[37] Kim C, Choi Y O, Lee W J, Yang K S. Electrochimica Acta, 2004, 50: 883-887
[38] Chung G S, Jo S M, Kim B C. Journal of Applied Polymer Science, 2005, 97: 165-170
[39] Xuyen N T, Ra J E, Lee Y H. J. Phys. Chem. B, 2007, 111: 11350-11353
[40] Jones R L, Richards R W. Polymers at Surface and Interface, Cambridge: Cambridge University Press, 1999
[41] Taylor G I. Proc. Roy. Soc. London. A, 1969, 313: 453-475
[42] Legrand D G, Gaines G L Jr. J. Colloid Interface Sci., 1969, 31: 162-167
[43] Behler K, Stravato A, Mochalin V, Korneva G, Yushin G, Gogotsi Y. ACS Nano, 2009, 3(2): 363-369
[44] Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G, Li C, Willis P. Adv. Mater., 2003, 15: 1161-1165
[45] Pedicini A, Farris R J. J. Polym. Sci. B, 2004, 42: 752-757
[46] Yang Q, Li D, Wei Y. Synth. Met., 2003, 137: 973-974
[47] Zhang Q, Wu D, Qi S, Wu Z, Yang X, Jin R. Mater. Lett., 2007, 61: 4027-4030
[48] Chen D, Liu T, Zhou X, Liu W, Hou H. J. Phys. Chem. B, 2009, 113: 9741-9748
[49] Zhu J, Wei S, Chen X, Karki A, Rutman D, Young D, Guo Z. J. Phys. Chem. C, 2010, 114: 8844-8850
[50] Qin C, Wang J, Cheng S, Wang X, Dai L, Chen G. Mater. Lett., 2009, 63: 1239-1241
[51] Cheng S, Shen D, Zhu X, Tian X, Zhou D, Fan L. European Polymer Journal , 2009, 45: 2767-2778
[52] Huang C, Wang S, Zhang H, Li T, Lai C, Chen S, Hou H. European Polymer Journal , 2006, 42: 1099-1104
[53] Huang C, Chen S, Lai C, Reneker D H, Hou H. Adv. Mater., 2006, 18: 668-671
[54] Chen F, Peng X, Li T, Chen S, Wu X, Reneker D H, Hou H. J. Phys. D Appl. Phys., 2008, 41: art. no. 025308
[55] Chen S, Hu P, Cheng C, Cheng H, Chen F, Greiner A, Hou H. Nanotechnology, 2008, 19: art. no. 015604
[56] Cheng C, Chen J, Chen F, Hu P, Wu X, Reneker D H, Hou H. J. Appl. Polym. Sci., 2009, 116: 1581-1586
[57] Carnell L S, Siochi E J, Holloway N, Stephens R, Rhim C, Niklason L, Clark R. Macromolecules, 2008, 41: 5345-5349
[58] Yang D, Lu B, Zhao Y, Jiang X. Adv. Mater., 2007, 19: 3702-3706
[59] Mincheva R, Manolova N, Rashkov I. Euro. Polym. J., 2007, 43: 2809-2818
[60] Pan H, Li L, Hu L, Cui X. Polymer, 2006, 47: 4901-4904
[61] Yang D, Zhang J, Zhang J, Nie J. J. Appl. Polym. Sci., 2008, 110: 3368-3372
[62] Xu C, Inai R, Ramakrishna S. Biomaterials, 2004, 25: 877-887
[63] Lee S H, Kim S Y, Lee J R. Polym. Int., 2010, 59: 212-217
[64] 仲红玲(Zhong H L), 张明艳(Zhang M Y), 张玉军(Zhang Y J), 巩桂芬(Gong G F). 纤维复合材料(Fiber Composites), 2008, 3: 41-44
[65] 王岩(Wang Y), 邵正彬(Shao Z B), 张玉军(Zhang Y J), 王立国(Wang L G). 合成纤维(Synthetic Fiber in China), 2007, 2: 5-7
[66] 王兆礼(Wang Z L), 张明艳(Zhang M Y), 张玉军(Zhang Y J). 绝缘材料(Insulating Materials), 2006, 39: 6-8
[67] 王岩(Wang Y), 张玉伟(Zhang Y W), 张明艳(Zhang M Y), 张玉军(Zhang Y J). 绝缘材料(Insulating Materials), 2006, 39: 16-18
[68] Liu J, Min Y, Chen J, Zhou H, Wang C. Macromol. Rapid Commun., 2007, 28: 215-219
[69] Yoshio I, Rikio Y. Saishin Polyimide, Kiso To Ouyou, Tokyo: NTS Inc. Press, 2002. 195-196
[70] Lv Y, Wu J, Wan L, Xu Z. J. Phys. Chem. C, 2008, 112: 10609-10615
[71] Chang Z, Xu Y, Zhao X, Zhang Q, Chen D. ACS Applied Materials and Interfaces, 2009, 1: 2804-2811

[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[3] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[4] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[5] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[6] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[7] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[8] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[9] 马亮, 时学娟, 张笑笑, 李莉莉. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220.
[10] 郑勰, 周一凡, 陈思远, 刘晓云, 查刘生. 刺激响应性电纺纳米纤维[J]. 化学进展, 2018, 30(7): 958-975.
[11] 许云汉, 王磊磊, 胡爱军, 袁莉莉, 王志媛, 杨士勇*. 耐高温聚酰亚胺泡沫材料[J]. 化学进展, 2018, 30(5): 684-691.
[12] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[13] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[14] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
[15] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.