English
新闻公告
More
化学进展 2011, Vol. 23 Issue (4): 687-694 前一篇   后一篇

• 综述与评论 •

羟基磷灰石作催化剂和催化剂载体的应用

张定林1,2, 赵华文1, 赵先英1, 刘毅敏1*, 陈华2*, 李贤均2   

  1. 1. 第三军医大学药学院化学教研室 重庆 400038;
    2. 四川大学化学学院有机金属络合催化研究所 绿色化学与技术教育部重点实验室 成都 610064
  • 收稿日期:2010-07-01 修回日期:2010-11-01 出版日期:2011-04-24 发布日期:2011-02-25
  • 通讯作者: e-mail:liuym2010@yeah.net; scuhchen@163.com E-mail:liuym2010@yeah.net; scuhchen@163.com

Application of Hydroxyapatite as Catalyst and Catalyst Carrier

Zhang Dinglin1,2, Zhao Huawen1, Zhao Xianying1, Liu Yimin1*, Chen Hua2*, Li Xianjun2   

  1. 1. Department of Chemistry, School of Pharmacy, Third Military Medical University, Chongqing 400038, China;
    2. Key Laboratory of Green Chemistry and Technology, Ministry of Education, Institute of Homogeneous Catalysis, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received:2010-07-01 Revised:2010-11-01 Online:2011-04-24 Published:2011-02-25

羟基磷灰石(hydroxyapatite,HAP) 是一种微溶于水的弱碱性磷酸钙盐,由于其具有强吸附性、表面酸碱可调性和强离子交换性 (能与大多数金属离子发生离子交换)等特殊性质可作为催化剂或催化剂载体广泛应用于催化领域。本文综述了羟基磷灰石作为催化剂及催化剂载体在催化领域中的应用,重点综述了羟基磷灰石在氧化反应(醇的氧化、烃的脱氢反应)、还原反应(氢解与加氢)、C-C键的形成反应(Claisen-Schmidt缩合、Michael加成、Knoevenagel缩合、Friedel-Crafts反应、Diels-Alder和adol反应、Heck反应等)等领域的应用。

Hydroxyapatite (HAP) is one of the weak alkaline calicium phosphate which slightly soluble in water. As catalyst or catalyst carrier, it is widely used in catalysis because of its strong adsorption ability, surface acidity or basicity and ion-exchange ability. In this article, we summarized the application of hydroxyapatite as catalyst and catalyst carrier in catalysis with emphases on the application of hydroxyapatite in oxidation reaction, reduction reaction and the formation of C-C bond. The application of hydroxyapatite in oxidation reaction mainly includes oxidation of alcohol and dehydrogenation of hydrocarbons. The formation of C-C bond mainly includes Claisen-Schmidt condensation reaction, Michael addition reaction, Knoevenagel condensation reaction, Friedel-Crafts reaction, Heck reaction, Diels-Alder and adol reaction. The reduction reaction includes hydrogenolysis and hydrogenation.

中图分类号: 

()

[1] Sugiyama S, Matsumura Y, Hayashi H. Energy Fuels, 1996, 10: 828-830

[2] Sugiyama S, Minami T, Hayashi H, Tanaka M, Moffat J B. J. Solid State Chem., 1996, 126: 242-252

[3] Sugiyama S, Minami T, Hayashi H, Tanaka M, Shigemoto N, Moffat J B. J Chem. Soc. Faraday Trans., 1996, 92: 293-299

[4] Sugiyama S, Abe K, Minami T, Hayashi H, Moffat J B. App. Catal. A, 1998, 169: 77-86

[5] Matsumura Y, Sugiyama S, Hayashi H, Moffat J B. J. Solid State Chem., 1995, 114: 138-145

[6] Jun J H, Lim T H, Nam S W, Hong S A, Yoon K J. App. Catal. A, 2006, 312: 27-34

[7] Jun J H, Jeong K S, Lee T J, Kong S J, Lim T H, Nam S W, Hong S A, Yoon K J. Korean J. Chem. Eng., 2004, 21: 140-146

[8] Jun J H, Lee T J, Lim T H, Nam S W, Hong S A, Yoon K J. J. Catal., 2004, 221: 178-190

[9] Boukha Z, Kacimi M, Pereira M F R, Faria J L, Figueiredo J L, Ziyad M. App. Catal. A, 2007, 317: 299-309

[10] Sugiyama S, Osaka T, Hirata Y, Sotowa K I. App. Catal. A, 2006, 312: 52-58

[11] Sugiyama S, Shono T, Makino D, Moriga T, Hayashi H. J. Catal., 2003, 214: 8-14

[12] Opre Z, Mallat T, Baiker A. J. Catal., 2007, 245: 482-486

[13] Kanai H, Nakao M, Imamura S. Catal. Commun., 2003, 4: 405-409

[14] Ho C M, Yu W Y, Che C M. Angew. Chem. Int. Ed., 2004, 43: 3303-3307

[15] Bett J A S, Christner L G, Keith Hl W. J. Am. Chem. Soc., 1967, 89: 5535-5541

[16] Joris S J, Amberg C H. J. Phys. Chem., 1971, 75: 3167-3171

[17] Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A. J. Catal., 2006, 241: 287-295

[18] Opre Z, Grunwaldt J D, Maciejewski M, Ferri D, Mallat T, Baiker A. J. Catal., 2005, 230: 406-419

[19] Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A. J. Catal., 2007, 251: 48-58

[20] Opre Z, Grunwaldt J D, Mallat T, Baiker A. J. Mol. Cat. A: Chem., 2005, 242: 224-232

[21] Yamaguchi K, Mori K, Mizugaki T. J. Am. Chem. Soc., 2000, 122: 7144 -7145

[22] 刘长春(Liu C C). 化学试剂(Chemical Regent), 2005, 27: 379-380

[23] Mori K, Kanai S, Hara T, Mizugaki T, Ebitani K, Jitsukawa K, Kaneda K. Chem. Mater., 2007, 19: 1249-1256

[24] Mori K, Yamaguchi K, Hara T, Mizugaki T, Ebitani K, Kaneda K. J. Am. Chem. Soc., 2002, 124: 11572-11573

[25] Boukha Z, Kacimi M, Ziyad M, Ensuque A, Bozon-Verduraz F. J. Mol. Cat. A: Chem., 2007, 270: 205-213

[26] Elkabouss K, Kacimi M, Ziyad M, Ammar S, Bozon-Verduraz F. J. Catal., 2004, 226: 16-24

[27] Sugiyama S, Moffat J B. Catal. Lett., 2002, 81: 77-81

[28] Fukahori S, Morikawa M, Ninomiya J. J. Mater. Sci., 2009, 44: 374-378

[29] Liptáková B, Hronec M, Cvengroová Z. Catal. Today, 2000, 61: 143-148

[30] Hara T, Mori K, Mizugaki T, Ebitani K, Kaneda K. Tetra-hedron. Lett., 2003, 44: 6207-6210

[31] Dominguez M I, Romero-Sarria F, Centeno M A, Odriozola J A. App. Catal. B, 2009, 87: 245-251

[32] Zahouily M, Abrouki Y, Bahlaouan B, Rayadh A, Sebti S. Catal. Commun., 2003, 4: 521-524

[33] Tahir R, Banert K, Solhy A, Sebti S. J. Mol. Cat. A: Chem., 2006, 246: 39-42

[34] Hara T, Kanai S, Mori K, Mizugaki T, Ebitani K, Jitsukawa K, Kaneda K. J. Org. Chem., 2006, 71: 7455-7462

[35] Mori K, Oshiba M, Hara T, Mizugaki T, Ebitani K, Kaneda K. Tetra hedron. Lett., 2005, 46: 4283-4286

[36] Sebti S, Tahir R, Nazih R, Saber A, Boulaajaj S. App. Catal. A., 2002, 228: 155-159

[37] Smahi A, Solhy A, el Badaoui H, Amoukal A, Tikad A, Maizi M, Sebti S. App. Catal. A, 2003, 250: 151-159

[38] Zhang Y, Zhao Y W, Xia C G. J. Mol. Cat. A: Chem., 2009, 306: 107-112

[39] Zhang Y, Xia C G. App. Catal. A, 2009, 366: 141-147

[40] Gupta M, Gupta R, Anand, M. Beilstein J. Org. Chem., 2009, 5: 1-7

[41] Mallouk S, Bougrin K, Laghzizil A, Benhida R. Molecules, 15: 813-823

[42] Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K. J. Am. Chem. Soc., 2003, 125: 11460-11461

[43] Sebti S, Tahir R, Nazih R, Boulaajaj S. App. Catal. A, 2001 218: 25-30

[44] Climent M J, Corma A, Iborra S, Mifsud M. Adv. Synth. Catal., 2007, 349: 1949-1954

[45] Sebti S, Solhy A, Tahir R, Smahi A. App. Catal. A, 2002 235: 273-281

[46] Solhy A, Tahir R, Sebti S, Skouta R, Bousmina M, Zahouily M, Larzek M. App. Catal. A, 2010, 374:189-193

[47] Cheikhi N, Kacimi M, Rouimi M, Ziyad D, Liotta L F, Pantaleo G, Deganello G. J. Catal., 2005, 232: 257-267

[48] Choudary B M, Sridhar C, Kantam M L, Sreedhar B. Tetra hedron. Lett., 2004, 45: 7319-7321

[49] Mori K, Mitani Y, Hara T, Mizugaki T, Ebitani K, Kaneda K. Chem. Commun., 2005, 3331-3333

[50] Sun H, Su F Z, Ni J, Cao Y, He H Y, Fan K N. Angew. Chem. Int. Ed., 2009, 48: 4390-4393

[51] Wang K, Kennedy G J, Cook R A. J. Mol. Cat. A: Chem., 2009, 298: 88-93

[52] Chen W, Huang Z L, Liu Y, He Q J. Catal. Commun., 2008, 9: 516-521

[53] Tsuchida T, Sakuma S, Takeguchi T, Ueda W. Ind. Eng. Chem. Res., 2006, 45: 8634-8642

[54] Tsuchida T, Kubo J, Yoshioka T, Sakuma S, Takeguchi T, Ueda W. J. Catal., 2008, 259: 183-189

[55] Atir R, Mallouk S, Bougrin K, Soufiaoui M, Laghzizil A. Syn. Commun., 2006, 36: 111-120

[56] Kantam M L, Subrahmanyam V B, Kumar K B S, Venkanna G T, Sreedhar B. Helvetica Chimica. Acta, 2008, 91: 1947-1953

[57] Ma'mani L, Sheykhan M, Heydari A, Faraji M, Yamini Y. App. Catal. A, 2010, 377: 64-69

[58] 杜治平(Du Z P), 刘亮(Liu L), 袁华(Yuan H), 熊剑(Xiong J), 周彬(Zhou B), 吴元欣(Wu Y X). 催化学报(J. Catal.), 2010, 31: 371-373

[59] Murata M, Hara T, Mori K, Ooe M, Mizugaki T, Ebitani K, Kaneda K. Tetra hedron. Lett., 2003, 44: 4981-4984

[60] Saih Y, Ait Chaoui M, Ezzamarty A, Lakhdar M. Catal. Commun., 2001, 2: 81-87

[61] Elazarifi N, Chaoui M A, El Ouassouli A, Ezzamarty A, Travert A, Leglise J, de Menorval L C, Moreau C. Catal. Today, 2004, 98: 161-170

[62] 张定林(Zhang D L), 杨朝芬(Yang C F), 冯健(Feng J), 付海燕(Fu H Y), 陈华(Chen H), 李瑞祥(Li R X), 李贤均(Li X J). 物理化学学报(Acta Physico-Chimica Sinica), 2009, 25: 2039-2044

[63] 张定林(Zhang D L), 杨朝芬(Yang C F), 孙亚萍(Sun Y P), 付海燕(Fu H Y), 李瑞祥(Li R X), 陈华(Chen H), 李贤均(Li X J). 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26: 2711-2718

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[8] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[9] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[10] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[11] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[12] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[13] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[14] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[15] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.