English
新闻公告
More
化学进展 2011, Vol. 23 Issue (4): 657-668 前一篇   后一篇

• 综述与评论 •

碳纳米管/半导体复合材料光催化研究进展

肖信1,2, 张伟德1*   

  1. 1. 华南理工大学化学与化工学院 广州 510640;
    2. 华南师范大学化学与环境学院 广州 510006
  • 收稿日期:2010-06-01 修回日期:2010-09-01 出版日期:2011-04-24 发布日期:2011-02-25
  • 通讯作者: e-mail:zhangwd@scut.edu.cn E-mail:zhangwd@scut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20773041)和教育部高等学校博士点基金项目(No.20070561008)资助

Photocatalysis of Carbon Nanotubes/Semiconductor Composites

Xiao Xin1,2, Zhang Weide1*   

  1. 1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China;
    2. School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
  • Received:2010-06-01 Revised:2010-09-01 Online:2011-04-24 Published:2011-02-25

碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,与半导体光催化剂结合能够增强催化剂的吸附能力、提高光催化效率、扩展光响应范围,而且有利于回收催化剂,极大地提高了半导体光催化剂的综合性能。本文首先分析了半导体光催化剂和碳纳米管的特点,总结了碳纳米管增强半导体光催化的机理,然后分别从复合材料制备方法、复合半导体种类和典型的应用三个不同角度,归纳总结了近年来碳纳米管/半导体复合材料光催化的研究进展,最后对其发展趋势作了展望。

Because of their unique one-dimensional geometric structure, large surface area, high electrical conductivity, elevated mechanical strength and strong chemical inertness, carbon nanotubes (CNTs) provide new features as supports for semiconductor photocatalysts with enhanced catalytic properties. The CNTs not only provide large surface for the dispersion of active semiconductors, but also improve the adsorption of the photocatalysts, enhance their photocatalytic activities, extend the light responding region and make them more easily recycled. The synergistic effect of the carbon nanotubes and semiconductors endows the nanocomposites with superb properties and excellent performance. In this review, based on the analysis and comparison of the advantages and disadvantages of semiconductors and carbon nanotubes, the enhancement mechanisms of the CNTs/semiconductor catalysts are introduced. Afterwards, the relevant literature and advances in photocatalysis of the CNTs/semiconductors are summarized according to (1) the preparation methods of composite materials, for example, direct deposition, sol-gel method, hydrothermal/solvothermal process, chemical vapor deposition and so forth; (2) the type of semiconductors, such as oxides, sulfides, nitrides and complex oxides, and (3) their typical applications, including the degradation of pollutants in water and air, photocatalytic splitting of water for hydrogen generation, used as antibacterial materials and as catalysts for the synthesis of organic compounds. Finally, the prospects and challenge for these composite materials are also discussed.

中图分类号: 

()

[1] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev., 1995, 95: 69-96
[2] Chen X, Mao S S. Chem. Rev., 2007, 107: 2891-2959
[3] Hong X T, Wang Z P, Cai W M, Lu F, Zhang J, Yang Y Z, Ma N, Liu Y J. Chem. Mater., 2005, 17: 1548-1552
[4] Zhang W D, Xu B, Jiang L C. J. Mater. Chem., 2010, 20: 6383-6391
[5] Woan K, Pyrgiotakis G, Sigmund W. Adv. Mater., 2009, 21: 2233-2239
[6] Oh W, Chen M. Bull. Korean Chem. Soc., 2008, 29: 159-164
[7] Dai K, Peng T, Ke D, Wei B. Nanotechnology, 2009, 20: 125601-125603
[8] Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S. Carbon, 2009, 47: 3280-3287
[9] Ji K H, Jang D M, Cho Y J, Myung Y, Kim H S, Kim Y, Park J. J. Phys. Chem. C, 2009, 113: 19966-19972
[10] An G, Ma W, Sun Z, Liu Z, Han B, Miao S, Miao Z, Ding K. Carbon, 2007, 45: 1795-1801
[11] Wang W, Serp P, Kalck P, Faria J L. J. Mol. Catal. A: Chem., 2005, 235: 194-199
[12] Xu Y, Zhuang Y, Fu X. J. Phys. Chem. C, 2010, 114: 2669-2676
[13] Wang G J, Lee M W, Chen Y H. Photochem. Photobiol., 2008, 84: 1493-1499
[14] Li X, Niu J, Zhang J, Li H, Liu Z. J. Phys. Chem. B, 2003, 107: 2453-2458
[15] Reddy K R, Sin B C, Yoo C H, Park W, Ryu K S, Lee J S, Sohn D, Lee Y. Scripta Mater., 2008, 58: 1010-1013
[16] Fu H, Xu T, Zhu S, Zhu Y. Environ. Sci. Technol., 2008, 42: 8064-8069
[17] Bahr J L, Tour J M. Chem. Mater., 2001, 13: 3823-3824
[18] Bahr J L, Yang J, Kosynkin D V, Bronikowski M J, Smalley R E, Tour J M. J. Am. Chem. Soc., 2001, 123: 6536-6542
[19] Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2: 1487-1491
[20] Yu Y, Yu J C, Yu J G, Kwok Y C, Che Y K, Zhao J C, Ding L, Ge W K, Wong P K. Appl. Catal. A Gen., 2005, 289: 186-196
[21] Peng X H, Chen J Y, Misewich J A, Wong S S. Chem. Soc. Rev., 2009, 38: 1076-1098
[22] Kang S, Cui Z, Mu J. Fullerenes, Nanotubes, Carbon Nanostruct., 2007, 15: 81-88
[23] Qian J, Lu K. J. Nanosci. Nanotechnol., 2009, 9: 5816-5822
[24] Jiang L, Gao L. Mater. Chem. Phys., 2005, 91: 313-316
[25] Gao B, Chen G Z, Li P G. Appl. Catal. B, 2009, 89: 503-509
[26] Yao Y, Li G, Ciston S, Lueptow R M, Gray K A. Environ. Sci. Technol., 2008, 42: 4952-4957
[27] Yu Y, Yu J C, Chan C Y, Che Y K, Zhao J C, Ding L, Ge W K, Wong P K. Appl. Catal. B-Environ., 2005, 61: 1-11
[28] Wang S, Ji L J, Wu B, Gong Q M, Zhu Y F, Liang J. Appl. Surf. Sci., 2008, 255: 3263-3266
[29] Li C, Wang W D. Chinese J. Chem. Phys., 2009, 22: 423-428
[30] Zhu L P, Liao G H, Huang W Y, Ma L L, Yang Y, Yu Y, Fu S Y. Mat. Sci. Eng. B-Solid, 2009, 163: 194-198
[31] Wang Q, Yang D, Chen D M, Wang Y B, Jiang Z Y. J. Nanopart. Res., 2007, 9: 1087-1096
[32] 徐静(Xu J), 宋小杰(Song X J), 魏先文(Wei X W). 光谱学与光谱分析(Spectrosc. Spect. Anal.), 2007, 27: 2510-2513
[33] Kuo C S, Tseng Y H, Lin H Y, Huang C H, Shen C Y, Li Y Y, Shah S I, Huang C P. Nanotechnology, 2007, 18: art. no. 465607
[34] Yu H T, Quan X, Chen S, Zhao H M, Zhang Y B. J. Photochem. Photobio. A, 2008, 200: 301-306
[35] Tsubota T, Ono A, Murakami N, Ohno T. Appl. Catal. B, 2009, 91: 533-538
[36] Hu G J, Meng X F, Feng X Y, Ding Y F, Zhang S M, Yang M S. J. Mater. Sci., 2007, 42: 7162-7170
[37] Kedem S, Rozen D, Cohen Y, Paz Y. J. Phys. Chem. C, 2009, 113: 14893-14899
[38] Wu H Q, Wang Q Y, Yao Y Z, Qian C, Zhang X J, Wei X W. J. Phys. Chem. C, 2008, 112: 16779-16783
[39] Fan W, Gao L, Sun J. J. Am. Ceram. Soc., 2006, 89: 731-733
[40] An G M, Ma W H, Sun Z Y, Liu Z M, Han B X, Miao S D, Miao Z J, Ding K L. Carbon, 2007, 45: 1795-1801
[41] Liu B, Zeng H C. Chem. Mater., 2008, 20: 2711-2718
[42] Yang L, Luo S, Liu S, Cai Q. J. Phys. Chem. C, 2008, 112: 8939-8943
[43] Gao B, Chen G Z, Puma G L. Appl. Catal. B-Environ., 2009, 89: 503-509
[44] Wang X J, Yao S W, Li X B. Chinese J. Chem., 2009, 27: 1317-1320
[45] Wang S, Shi X L, Shao G Q, Duan X L, Yang H, Wang T G. J. Phys. Chem. Solids., 2008, 69: 2396-2400
[46] Ma L L, Sun H Z, Zhang Y G, Lin Y L, Li J L, Yu K, Yu Y, Tan M, Wang J B. Nanotechnology, 2008, 19: art. no. 115709
[47] Xu L X, Ma C F, Sang L X, Li Q W, Dai H X, Hong H. Chinese J. Catal., 2007, 28: 1083-1088
[48] Fu B, Gao L, Yang S W. J. Am. Ceram. Soc., 2007, 90: 1309-1311
[49] Sharon M, Pal B, Kamat D V. J. Biomed. Nanotechnol., 2005, 1: 365-368
[50] Chen C, Liang Y, Zhang W. J. Alloys Compd., 2010, 501: 168-172
[51] Ahmmad B, Kusumoto Y, Ikeda M, Somekawa S, Horie Y. J. Adv. Oxid. Technol., 2007, 10: 415-420
[52] Zhang F J, Chen M L, Oh W C. Asian J. Chem., 2009, 21: 7077-7092
[53] Wang H, Wang H, Jiang W. Chemosphere, 2009, 75: 1105-1111
[54] Wang H, Wang H, Jiang W, Li Z. Water Res., 2009, 43: 204-210
[55] 李维学(Li W X), 吴中立(Wu Z L), 崔永福(Cui Y F), 戴剑锋(Dai J F), 王青(Wang Q). 应用化工(Applied Chemical Industry), 2008, 37: 478-480
[56] 周艺(Zhou Y), 黄可龙(Huang K L), 李倦生(Li J S), 王浩(Wang H), 杨波(Yang B), 夏畅斌(Xia C B). 功能材料(Journal of Functional Materials), 2008, 39: 1391-1394
[57] Yen C, Lin Y, Hung C, Tseng Y, Ma C M, Chang M, Shao H. Nanotechnology, 2008, 19: 45601-45604
[58] Wang W, Serp P, Kalck P, Silva C G, Faria J L. Mater. Res. Bull., 2008, 43: 958-967
[59] 吴玉程(Wu Y C), 刘晓璐(Liu X L), 叶敏(Ye M), 解挺(Xie T), 黄新民(Huang X M). 物理化学学报(Acta Physico-Chimica Sinica), 2008, 24: 97-102
[60] Luo Y, Liu J, Xia X, Li X, Fang T, Li S, Ren Q, Li J, Jia Z. Mater. Lett., 2007, 61: 2467-2472
[61] Gao Y, Liu H, Ma M. React. Kinet. Catal. Lett., 2007, 90: 11-18
[62] 罗永松(Luo Y S), 夏晓红(Xia X H), 方涛(Fang T), 李晓勤(Li X Q), 李素琴(Li S Q), 任沁峰(Ren Q F), 李家麟(Li J L), 贾志杰(Jia Z J). 化工新型材料(New Chemical Materials), 2006, 34: 36-39
[63] Pyrgiotakis G, Lee S, Sigmund W. Mater. Res. Soc. Symp. Proc., 2005, 876E: R5-R7
[64] Wang W, Serp P, Kalck P, Faria J L. Appl. Catal. B, 2005, 56: 305-312
[65] Byrappa K, Dayananda A S, Sajan C P, Basavalingu B, Shayan M B, Soga K, Yoshimura M. J. Mater. Sci., 2008, 43: 2348-2355
[66] Yu H, Quan X, Chen S, Zhao H, Zhang Y. J. Photochem. Photobiol. A, 2008, 200: 301-306
[67] Ou Y, Lin J, Fang S, Liao D. Chem. Phys. Lett., 2006, 429: 199-203
[68] Yu H, Zhao H, Quan X, Chen S. Chin. Sci. Bull., 2006, 51: 2294-2296
[69] Kedem S, Rozen D, Cohen Y, Paz Y. J. Phys. Chem. C, 2009, 113: 14893-14899
[70] Hu G, Meng X, Feng X, Ding Y, Zhang S, Yang M. J. Mater. Sci., 2007, 42: 7162-7170
[71] Kedem S, Schmidt J, Paz Y, Cohen Y. Langmuir, 2005, 21: 5600-5604
[72] Yu Y, Yu J C, Yu J, Kwok Y, Che Y, Zhao J, Ding L, Ge W, Wong P. Appl. Catal. A, 2005, 289: 186-196
[73] Guo H, Jiao Z, Li Z, Wang L, Wu R, Xu P, Zhang H. CN101670283, 2010
[74] Castro M R S, Sam E D, Veith M, Oliveira P W. Nanotechnology, 2008, 19: 105701-105704
[75] Zhu L, Liao G, Huang W, Ma L, Yang Y, Yu Y, Fu S. Mater. Sci. Eng. B, 2009, 163: 194-198
[76] 吴小利(Wu X L), 岳涛(Yue T), 陆荣荣(Lu R R), 朱德彰(Zhu D Z), 朱志远(Zhu Z Y). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2005, 21: 1605-1608
[77] Yan Y, Chang T, Wei P C, Kang S Z, Mu J. J. Disper. Sci. Technol., 2009, 30: 198-203
[78] Li C S, Tang Y P, Kang B N, Wang B S, Zhou F, Ma Q, Xiao J, Wang D Z, Liang J. Sci. China. Ser. E, 2007, 50: 279-289
[79] Ma L, Sun H, Zhang Y, Lin Y, Li J, Wang E, Yu Y, Tan M, Wang J. Nanotechnology, 2008, 19: 115701-115709
[80] Wu H, Wang Q, Yao Y, Qian C, Zhang X, Wei X. J. Phys. Chem. C, 2008, 112: 16779-16783
[81] Wu H Q, Wang Q, Yao Y Z, Qian C, Cao P P, Zhang X J, Wei X W. Mater. Chem. Phys., 2009, 113: 539-543
[82] Fu B, Gao L, Yang S. J. Am. Ceram. Soc., 2007, 90: 1309-1311
[83] Li F, Sun W, Wang H, Xiang X. CN 101664676, 2010
[84] Woan K, Pyrgiotakis G, Sigmund W. Adv. Mater., 2009, 21: 2233-2239
[85] Wang H, Wang H L, Jiang W F, Li Z Q. Water. Res., 2009, 43: 204-210
[86] Wang H, Wang H L, Jiang W F. Chemosphere, 2009, 75: 1105-1111
[87] Zhu Z, Zhou Y, Yu H, Nomura T, Fugetsu B. Chem. Lett., 2006, 35: 890-891
[88] Xu Z Z, Long Y Z, Kang S Z, Mu J. J. Disper. Sci. Technol., 2008, 29: 1150-1152
[89] Tan X L, Fang M, Wang X K. J. Nanosci. Nanotechnol., 2008, 8: 5624-5631
[90] Yen C Y, Lin Y F, Hung C H, Tseng Y H, Ma C C, Chang M C, Shao H. Nanotechnology, 2008, 19: art. no. 045604
[91] Fujishima A, Honda K. Nature, 1972, 238: 37-38
[92] Ahmmad B, Kusumoto Y, Somekawa S, Ikeda M. Catal. Commun., 2008, 9: 1410-1413
[93] Lee S, Pumprueg S, Moudgil B, Sigmund W. Colloids Surf. B, 2005, 40: 93-98
[94] Krishna V, Pumprueg S, Lee S H, Zhao J, Sigmund W, Koopman B, Moudgil B M. Process Saf. Environ. Prot., 2005, 83: 393-397
[95] Oh W, Zhang F, Chen M. Bull. Korean Chem. Soc., 2009, 30: 2637-2642
[96] Xia X H, Jia Z H, Yu Y, Liang Y, Wang Z, Ma L L. Carbon, 2007, 45: 717-721
[97] Bouazza N, Ouzzine M, Lillo-Rodenas M A, Eder D, Linares-Solano A. Appl. Catal. B-Environ., 2009, 92: 377-383
[98] 于洪涛 (Yu H T), 全燮 (Quan X). 化学进展(Prog. Chem.), 2009, 21 (2/3): 406-419

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[9] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[14] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[15] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.