English
新闻公告
More
化学进展 2011, Vol. 23 Issue (4): 637-648 前一篇   后一篇

• 特约稿 •

点击化学最新进展

邱素艳, 高森, 林振宇, 陈国南*   

  1. 食品安全分析与检测教育部重点实验室 福建省食品安全分析与检测技术重点实验室 福州大学化学化工学院 福州 350002
  • 收稿日期:2010-06-01 修回日期:2010-08-01 出版日期:2011-04-24 发布日期:2011-02-25
  • 通讯作者: e-mail:guonanchen@126.com E-mail:guonanchen@126.com

Advances in Click Chemistry

Qiu Suyan, Gao Sen, Lin Zhenyu, Chen Guonan*   

  1. Key Lab of Analysis and Detection Technology for Food Safety, Ministry of Education Fujian Provincial Key Lab of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou 350002, China
  • Received:2010-06-01 Revised:2010-08-01 Online:2011-04-24 Published:2011-02-25

点击化学(click chemistry)是由2001年诺贝尔化学奖获得者美国化学家 Sharpless首次提出。最主要的一类点击化学反应是Cu(Ⅰ)化合物催化叠氮化合物与炔基化合物反应生成1,2,3-三唑五元环化合物,它能够将两种不同物质通过五元环共价结合起来。该方法具备产量高、效率高、副反应少、反应条件温和、分离提纯简单、环境污染小等优点,因此得到了广泛的应用。目前点击化学的发展极为迅速,涉及到了各个领域,特别是在功能聚合物、表面修饰、生物大分子、DNAs,生物与化学传感器等方面取得了瞩目的成就。本文论述了点击化学反应的基本概念、特点及优势,对近几年点击化学的发展状况,以及一些最新研究成果作一简要概述,并展望了点击化学的发展前景。

Click chemistry, a new molecular approach proposed by Sharpless and co-workers in 2001, is the most practical and reliable chemical reactions to connect a diversity of structures. The Cu (Ⅰ) catalyzed azide-alkyne 1,3-dipolar cycloaddition is one of the most common reactions in click chemistry, which has high yield, good efficiency, and high purity. In addition, this click reaction is essentially inert to most biological molecules, oxygen, water, and tolerant of a wide range of solvents, pH values and temperatures, and allows mild reaction conditions. This click reaction also has excellent selectivity in chemical synthesis. Owing to the fact that the azide and alkyne groups are facile introduced in the structure of molecules and form a stable 1,2,3-trizoles via click reaction, it has been widely applied in syntheses of functional polymers and biomacromolecules, surfaces modification, functionalization of DNAs and carbon nanotubes, and it has been also widely used for fabrication of biological or chemical sensors. In recent years, the cells and viruses have been modified by using click chemistry, while it doesn't damage the cells and viruses, and still keep their good biological activity. In this review, the basic principle, characteristics and advantages of click chemistry are described, the recent progress and some important research results in click chemistry are then introduced, and finally, the advances of click chemistry are prospected.

中图分类号: 

()

[1] Kolb H C, Finn M G, Sharpless K B. J. Angew. Chem. Int. Ed., 2001, 40: 2004-2021
[2] 张欣豪(Zhang X H ),吴云东(Wu Y D ). 化学进展 (Progress in Chemistry), 2008, 20(1): 1-4
[3] Michael A J . Prakt . Chem., 1893, 48: 94
[4] Huisgen R. in 1,3-Dipolar Cycloaddition Chemistry (Ed. Padwa A). New York: Wiley, 1984. 1: 1-176
[5] Tornoe C W, Christensen C, Meldal M. J. Org. Chem., 2002, 67: 3057-3062
[6] Yao Y, Tian D, Li H B. Applied Materials & Interfaces, 2010, 2: 684-690
[7] Gallant N D, Lavery K A, Amis E J, Becker M L. Adv. Mater., 2007, 19: 965-969
[8] Kacprzak K M, Maier N M, Lindner W. Tetrahedron Lett., 2006, 47: 8721-8726
[9] Prakash S, Long T M, Selby J C, Moore J S, Shannon M A. Anal. Chem., 2007, 79: 1661-1667
[10] Lutz J F, Boerner H G, Weichenhan K. Macromol. Rapid Commun., 2005, 26: 514-518
[11] Mantovani G, Ladmiral V, Tao L, Haddleton D M. Chem. Commun., 2005, 2089-2091
[12] Sumerlin B S, Tsarevsky N V, Louche G, Lee R Y, Matyjaszewski K. Macromol., 2005, 38: 7540-7545
[13] Gao H, Louche G, Sumerlin B S, Jahed N, Golas P, Matyjaszewski K. Macromol., 2005, 38: 8979-8982
[14] Englert B C, Bakbak S, Bunz U H F. Macromol., 2005, 38: 5868-5877
[15] Gao H, Siegwart D J, Jahed N, Sarbu T, Matyjaszewski K. Des. Monomers Polym., 2005, 8: 533-546
[16] Killops K L, Campos L M, Hawker C J. J. Am. Chem. Soc., 2008, 130: 5062-5064
[17] Urbani C N, Bell C A, Whittaker M R, Monteiro M J. Macromol., 2008, 41: 1057-1060
[18] Kinnane C R, Wark K, Such G K, Johnston A P R, Caruso F. Small, 2009, 5: 444-448
[19] Moore N M, Lin N J, Gallant N D, Becker M L. Biomaterials, 2010, 31: 1604-1611
[20] Gierlich J, Burley G A, Gramlich P, Hammond D M, Carell T. Org. Lett., 2006, 8: 3639-3642
[21] Wirges C T, Gramlich P M E, Gutsmied K, Gierlich J, Burley G A, Carell T. QSAR Comb. Sci., 2007, 26: 1159-1164
[22] Mehdinia A, Kazemi S H, Bathaie S Z, Alizadeh A, Shamsipur M, Mousavi M F. Anal. Biochem., 2008, 375: 331-338
[23] Cutler J I, Zheng D, Xu X Y, Giljohann D A, Mirkin C A. Nano Lett., 2010, 10: 1477-1480
[24] Seela F, Ingale S A. J. Org. Chem., 2010, 75: 284-295
[25] Li H M, Cheng F O, Duft A M, Adronov A. J. Am. Chem. Soc., 2005, 127: 14518 -14524
[26] Liu J Y, Nie Z H, Gao Y, Adronov A, Li H. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 7187-7199
[27] Voggu R, Suguna P, Chandrasekaran S, Rao C N R. Chem. Phys. Lett., 2007, 443: 118-121
[28] Donald T J M, Blackburn J L, Metzger W K, Rumbles G, Heben M J. J. Phys. Chem. C, 2007, 111: 17894-17900
[29] Kolb H C, Sharpless K B. Drug Discovery Today, 2003, 8: 1128-1137
[30] Mindt T L, Struthers H, Brans L, Anguelov T, Schweinsberg C, Maes V, Tourwe D, Schibli R. J . Am. Chem. Soc., 2006, 128: 15096-15097
[31] Bonnet D, Ilien B, Galzi J L, Riché S, Antheaune C, Hibert M. Bioconjugate Chem., 2006, 17: 1618-1623
[32] Li J, Zheng M Y, Tang W, He P L, Zhu W L, Li T X, Zuo J P, Liu H, Jiang H L. Bioorg. Med. Chem. Lett., 2006, 16: 5009-5013
[33] Vieyres A, Lam T, Gillet R, Franc G, Castonguay A, Kakkar A. Chem. Commun., 2010, 1875-1877
[34] Mahmud I M, Zhou N Z, Wang L, Zhao Y M. Tetrahedron, 2008, 64: 11420-11432
[35] Iehl J, Nierengarten J F. Chem. Eur. J., 2009, 15: 7306- 7309
[36] Boisselier E, Diallo A K, Salmon L, Orenetals C, Ruiz J, Astruc D. J. Am. Chem. Soc., 2010, 132: 2729-2742
[37] Camponovo J, Ruiz J, Cloutet E, Astruc D. Chem. Eur. J., 2009, 15: 2990-3002
[38] Li Z A, Yu G, Wu W B, Liu Y Q, Ye C, Qin J G, Li Z. Macromol., 2009, 42: 3864-3868
[39] Ma X P, Tang J B, Shen Y Q, Fan M H, Tang H D, Radosz M. J. Am. Chem. Soc., 2009, 131: 14795-14803
[40] Borges J E, Goncalves S, Vale M L, Mera G X, Sotelo E J. Comb. Chem., 2008, 10: 372-375
[41] Agnew H D, Rohde R D, Millward S W, Nag A, Yeo W S, Hein J E, Pitram S M, Tariq A A, Burns V M, Krom R J, Fokin V V, Sharpless K B, Heath J R. Angew. Chem. Int. Ed., 2009, 48: 4944-4948
[42] Peters W, Willnow S, Duisken M, Kleine H, Macherey T, Duncan K E, Lichfield D W, Lüscher B, Weinhold E. Angew. Chem. Int. Ed., 2010, 49: 5170-5173
[43] Gubbens J, Ruijter E, Fays L E V, Damen J M A, Kruijff B, Slijper M, Rijkers D T S, Liskamp R M J, Kroon A I P M. Chemistry & Biology, 2009, 16: 3-14
[44] Li C, Henry E, Mani N K, Tang J, Brochon J C, Deprez E, Xie J. Eur. J. Org. Chem., 2010, 2395-2405
[45] Hu M Y, Li J Q, Shao Q, Yao J . Org. Lett., 2008, 10: 5529-5531
[46] Jacobsen F E, Lewis J A, Cohen S M. ChemMedChem, 2007, 2: 152-171
[47] Puerta D T, Lewis J A, Cohen S M. J. Am. Chem. Soc., 2004, 126: 8388-8389
[48] Lewis J A, Mongan J, McCammon J A, Cohen S M. ChemMedChem, 2006, 1: 694-697
[49] Yan Y L, Cohen S M. Org. Lett., 2007, 9: 2517-2520
[50] Agrawal A, Romero-Perez D, Jacobsen J A, Villarreal F J, Cohen S M . ChemMedChem, 2008, 3: 812-820
[51] Nguyen J G, Cohen S M. J. Am. Chem. Soc., 2010, 132: 4560-4561
[52] Parrish B, Emrick T. Bioconjugate Chem., 2007, 18: 263- 267
[53] Chen X J, McRae S, Parelkar S, Emrick T. Bioconjugate Chem., 2009, 20: 2331-2341
[54] Baut N L, Diaz D D, Punna S, Finn M G, Brown H R. Polymer, 2007, 48: 239-244
[55] Durmaz H, Dag A, Altintas O, Erdogan T, Hizal G, Tunca U. Macromolecules, 2007, 40: 191-198
[56] Srinivasachari S, Liu Y, Zhang G D, Prevette L E, Reineke T M. J . Am. Chem. Soc., 2006, 128: 8176-8184
[57] Srinivasachari S, Liu Y, Prevette L E, Reineke T M. J . Am. Chem. Soc., 2007, 28: 2885-2898
[58] Srinivasachari S, Fichter K M, Reineke T M. J . Am. Chem. Soc., 2008, 130: 4618-4627
[59] Riva R, Schmeits S, Jérme C, Lecomte P. Macromolecules, 2007, 40: 796-803
[60] Lecomte P, Riva R, Jérme C, Jérme R. Macromol.Rapid Commun., 2008, 982-997
[61] Collman J P, Devaraj N K, Chidsey C E D.Langmuir, 2004, 20: 1051-1053
[62] Devaraj N K, Miller G P, Collman J P, Kool E T, Chidsey C E D . J. Am. Chem.Soc., 2005, 127: 8600-8601
[63] Collman J P, Devaraj N K, Eberspacher T P A, Chidsey C E D. Langmuir, 2006, 22: 2457-2464
[64] Devaraj N K, Dinolfo H D, Chidsey C E D, Collman J P. J. Am. Chem. Soc., 2006, 128: 1794-1795
[65] Devaraj N K, Decreau R A, Ebina W, Collman J P, Chidsey C E D. J. Phys. Chem. B, 2006, 110: 15955-15962
[66] Decréau R A, Collman J P, Yang Y, Yan Y, Devaraj N K. J.Org. Chem., 2007, 72: 2794-2802
[67] Devadoss A, Chidsey C E D . J. Am. Chem. Soc., 2007, 129: 5370-5371
[68] Collman J P, Hosseini A, Eberspacher T A, Chidsey C E D . Langmuir, 2009, 25: 6517-6521
[69] Decréau R A, Collman J P, Hosseini A. Chem. Soc. Rev., 2010, 39: 1291-1301
[70] Wang L W, Tian Y, Ran Q, Hu Z C, Xu J J, Xian Y Z, Peng R, Jin L T. Electrochem. Commun., 2009, 11: 339-342
[71] Ku S Y, Wong K T, Bard A J. J. Am. Chem. Soc., 2008, 130: 2392-2393
[72] Li Y, Zhang W X, Chang J, Chen J C, Li G T, Ju Y. Macromol. Chem. Phys., 2008, 209: 322-329
[73] Nina H, Gasser G, Kster D, Metzler-Nolte N. Bioconjugate Chem., 2009, 20: 1578-1586
[74] Luo L, Frisbie C D. J. Am. Chem. Soc., 2010, 132: 8854-8855
[75] Fleming D A, Thode C J, Williams M E. Chem. Mater., 2006,18: 2327-2334
[76] Gole A, Murphy C J. Langmuir, 2008, 24: 266-272
[77] White M A, Johnson J A, Koberstein J T, Turro N J. J. Am. Chem.Soc., 2006, 128: 11356-11357
[78] Lu J, Shi M, Shoichet M S. Bioconjugate Chem., 2009, 20: 87-94
[79] Justin L, Yamamoto T, Kosaka A, Takanori F, Noriyuki I, Aida T. J . Am. Chem. Soc., 2008, 130: 1530-1531
[80] Landis E C, Hamers R J. Chem. Mater., 2009, 21: 724-730
[81] Britcher L, Barnes T J, Griesser H J, Prestidge C A. Langmuir, 2008, 24: 7625-7627
[82] Ciampi C S, Bcking T, Kilian K A, Harper J B, Gooding J J. Langmuir, 2008, 24: 5888-5892
[83] Nakazawa J, Daniel T, Stack P. J . Am. Chem. Soc., 2008, 130: 14360-14361
[84] Huang L, Sukanta D, Krishnaswami R, Michal K. Langmuir, 2010, 26: 2688-2693
[85] Zhou Y, Wang S X, Zhang K, Jiang X Y. Angew. Chem. Int. Ed., 2008, 47: 7454-7456
[86] Xu X Y, Daniel W L, Wei W, Mirkin C A. Small, 2010, 6: 623-626
[87] Li H B, Zheng Q L, Han C P. Analyst, 2010, 135: 1360- 1364
[88] Zhang Y F, Li B X, Xu C L. Analyst, 2010, 135: 1579-1584
[89] Odaci D, Gacal B N, Gacal B, Timur S, Yagci Y. Biomacromolecules, 2009, 10: 2928-2934
[90] Sivakumar K, Xie F, Cash B M, Long S, Barnhill H N, Wang Q. Org. Lett., 2004, 24: 4603-4606
[91] Kim Y P, Daniel W L, Xia Z Y, Xie H X, Mirkin C A, Rao J H. Chem. Commun., 2010, 76-78
[92] Mader S H, Link M, Achatz D E, Uhlmann K, Li X H, Wolfbeis O S. Chem. Eur. J., 2010, 16: 5416-5424
[93] Yan X, Suzuki Y, Komiyama M. Angew. Chem. Int. Ed., 2009, 48: 3281-3284
[94] Such G K, Quinn J F, Quinn A, Tjipto E, Caruso F. J. Am. Chem. Soc., 2006, 128: 9318-9319
[95] Geest B G D, Camp W V, Prez F E D, Smedt S C D, Demeester J, Hennink W E. Macromol.Rapid. Commun., 2008, 29: 1111-1118
[96] Beatty K E, Tirrell D A. Bioorg. Med. Chem. Lett., 2008, 18: 5995-5999
[97] Cappella P, Gasparri F, Pulici M, Moll J. Cytometry Part A,2008, 73A: 626-636
[98] Steinmetz N F, Mertens M E, Taurog R E, Johnson J E, Commandeur U, Fischer R, Manchester M. Nano Lett., 2010, 10: 305-312
[99] Bruckman M A, Kaur G, Lee L A, Xie F, Sepulveda J, Breitenkamp R, Zhang X F, Joralemon M, Russell T P, Emrick T, Wang Q. ChemBioChem, 2008, 9: 519 - 523
[100] Mortisen D, Peroglio M, Alini M, Eglin D. Biomacromolecules, 2010, 11: 1261-1272

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[5] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[6] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[7] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[8] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[9] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[10] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[11] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[12] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[13] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[14] 王灯旭, 曹金风, 韩栋栋, 李文思, 冯圣玉. 有机硅合成新方法[J]. 化学进展, 2019, 31(1): 110-120.
[15] 许颖, 高婷婷, 王启晓, 屈阳, 刘宏飞, 辛渊蓉. 高分子类型MONOLITH材料的制备技术及其作为亲和色谱固定相用于分离生物大分子的应用[J]. 化学进展, 2018, 30(8): 1112-1120.
阅读次数
全文


摘要

点击化学最新进展