English
新闻公告
More
化学进展 2011, Vol. 23 Issue (4): 613-622   后一篇

• Mini Accounts •

二氧化碳基共聚物

秦玉升, 王献红*, 王佛松   

  1. 中国科学院长春应用化学研究所生态环境高分子材料院重点实验室 长春 130022
  • 收稿日期:2010-11-30 出版日期:2011-04-24 发布日期:2011-03-25
  • 通讯作者: e-mail: xhwang@ciac.jl.cn E-mail:xhwang@ciac.jl.cn
  • 作者简介:Prof. Wang Xianhong was born in 1966. He received bachelor’s degree in 1988 from Shanghai Jiaotong University, and Ph.D. in polymer chemistry and physics in Dec. 1993 from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. His research interests are conductive polymer and CO2-ba sed copolymer. His g roup developed industry viable rare earth coordination ternary catalyst, which has been used in pilot scale production of poly( propylene ca rbonat e), an alternating copolymer of CO2 and propylene oxide, in Inner Mongolia Mengxi High-Tech Corporation and China National Offshore Oil Company. Now he is the co-author of more than 110 publications, and co-inventor of over 30 Chinese patents, he is also the co-inventor of 4 US patents.

Recent Advances in Carbon Dioxide Based Copolymer

Qin Yusheng, Wang Xianhong*, Wang Fosong   

  1. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2010-11-30 Online:2011-04-24 Published:2011-03-25

二氧化碳共聚物利用温室气体二氧化碳为原料,具备良好的生物降解性能,成本相对较低,是一种理想的全降解型塑料品种。近年来,随着催化剂技术的发展,二氧化碳共聚物工业化进程已经起步,但催化剂成本较高、聚合周期较长、聚合物的热学和力学性能不理想等因素限制了其推广和应用。本实验室制备的无机物负载稀土三元催化剂,催化活性提高了36%。同时利用提高分子量、交联和制备区域规整聚合物的方法成功地提高了聚碳酸丙烯酯的分子间相互作用力,实现了二氧化碳共聚物的热学、力学性能的改善。

Carbon dioxide based copolymers utilize greenhouse gas CO2 and can be applied in research and industry, which makes it become one of the emerging low cost biodegradable plastics. This paper summarizes our achievements in improvement of catalytic activity for propylene oxide (PO)-CO2 copolymerization and enhancing molecular chain interaction of poly(propylene carbonate) (PPC). The supported strategy on rare-earth ternary catalyst showed 36% increase in catalytic activity. Three strategies including increasing molecular weight of PPC, crosslinking of PPC and preparation of regio-regular PPC were used to enhance molecular chain interaction of carbon dioxide based copolymers, which were effective in improving the thermal and mechanical performances of CO2 copolymers.

中图分类号: 

()


[1] Sakakura T, Choi J C, Yasuda H. Chem. Rev., 2007, 107(6): 2365-2387

[2] Mikkelsen M, Jorgensen M, Krebs F C. Energy Environ. Sci., 2010, 3(1): 43-81

[3] Coates G W, Moore D R. Angew. Chem. Int. Ed., 2004, 43(48): 6618-6639

[4] Darensbourg D J. Chem. Rev., 2007, 107(6): 2388-2410

[5] Inoue S, Koinuma H, Tsuruta T. J. Polym. Sci. Part B: Polym. Lett., 1969, 7(4): 287-292

[6] Inoue S, Koinuma H, Tsuruta T. Makromol. Chem., 1969, 130(1): 210-220

[7] Rokicki A, Kuran W. J. Macromol. Sci. Rev. Macromol. Chem. Phys., 1981, C21(1): 135-186

[8] Darensbourg D J, Holtcamp M W. Coord. Chem. Rev., 1996, 153: 155-174

[9] Super M, Beckman E J. Macromol. Symp., 1998, 127: 89-108

[10] Sugimoto H, Inoue S. Pure Appl. Chem., 2006, 78(10): 1823-1834

[11] Liu B Y, Zhao X J, Wang X H, Wang F S. J. Polym. Sci. Part A: Polym. Chem., 2001, 39(16): 2751-2754

[12] Soga K, Hyakkoku K, Izumi K, Ikeda S. J. Polym. Sci: Polym. Chem. Ed., 1978, 16(9): 2383-2392

[13] Listos T, Kuran W, Siwiec R. J. Macrom. Sci. Pure Appl. Chem., 1995, A32(3): 393-403

[14] Tao Y H, Wang X H, Zhao X J, Li J, Wang F. Polymer, 2006, 47(21): 7368-7373

[15] Kuran W, Listos T. Macromol. Chem. Phys., 1994, 195(3): 977-984

[16] Qin Z Q, Thomas C M, Lee S, Coates G W. Angew. Chem. Int. Ed., 2003, 42(44): 5484-5487

[17] Bhattacharya A. Prog. Polym. Sci., 2000, 25(3): 371-401

[18] Darwis D, Mitomo H, Yoshii F. Polym. Degrad. Stab., 1999, 65(2): 279-285

[19] Lukaszczyk J, Katarzyna J, Witold K, Tomasz L. Macromol. Rapid Commun., 2000, 21(11): 754-757

[20] Zhang N R, Wang X H, Zhao X J, Wang F S. Acta Polym. Sin., 2005, (4): 571-573

[21] Price C C, Osgan M. J. Am. Chem. Soc., 1956, 78: 4787-4792

[22] Lednor P W, Rol N C. Chem. Commun., 1985, 598-599

[23] Natta G, Pasquon I, Giachetti E. Angew. Chem., 1957, 69: 213-219

[24] Ewen J A. J. Am. Chem. Soc., 1984, 106(21): 6355-6364

[25] Gomez F J, Waymouth R M. Science, 2002, 295: 635-636

[26] Jedlinski Z, Dworak A, Bero M. Makromol. Chem., 1979, 180(4): 949-952

[27] Borgne A L, Spassky N, Jun C L, Morntaz A. Makromol. Chem., 1988, 189: 637-650

[28] Chisholm M H, NavarroLlobet D. Macromolecules, 2002, 35(6): 2389-2392

[29] Watanabe Y, Yasuda T, Aida T, Inoue S. Macromolecules, 1992, 25(5): 1396-1400

[30] Ree M, Bae J Y, Jung J H, Shin T J. J. Polym. Sci. Part A: Polym. Chem., 1999, 37(12): 1863-1876

[31] Quan Z L, Wang X H, Zhao X J, Wang F S. Polymer, 2003, 44(19): 5605-5610

[32] Tao Y H, Wang X H, Chen X S, Zhao X J, Wang F S. J. Polym. Sci. Part A: Polym. Chem., 2008, 46(13): 4451-4458

[33] Darensbourg D J, Mackiewicz R M, Rodgers J L, Phelps A L. Inorg. Chem., 2004, 43(6): 1831-1833

[34] Chisholm M H, Zhou Z P. J. Am. Chem. Soc., 2004, 126(35): 11030-11039

[35] Paddock R L, Nguyen S T. Macromolecules, 2005, 38(15): 6251-6253

[1] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[2] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[3] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[4] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[5] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[6] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[7] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[8] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[9] 杨梦茹, 李华静, 罗宁丹, 李锦, 周安宁, 李远刚. 二氧化碳电催化还原产乙烯: 催化剂、反应条件和反应机理[J]. 化学进展, 2019, 31(2/3): 245-257.
[10] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[11] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[12] 刘孟岩, 王元双, 邓雯, 温珍海. 铜基电催化剂还原CO2[J]. 化学进展, 2018, 30(4): 398-409.
[13] 张圆正, 谢利利, 周怡静, 殷立峰*. 二维Z型光催化材料及其在环境净化和太阳能转化中的应用[J]. 化学进展, 2016, 28(10): 1528-1540.
[14] 刘一凡, 马玉玲, 徐琴琴, 银建中. 支撑型离子液体膜的制备、表征及稳定性评价[J]. 化学进展, 2013, 25(10): 1795-1804.
[15] 边颖慧, 董徐静, 朱丽君, 周玉路, 项玉芝, 夏道宏. 石油组分及其模型化合物的超分子化学作用[J]. 化学进展, 2013, 25(08): 1260-1271.
阅读次数
全文


摘要

二氧化碳基共聚物