English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2617-2626 前一篇   后一篇

• 综述与评论 •

特殊型纳米多孔阳极氧化铝模板的制备

叶秋梅, 宋晔*, 刘鹏, 胡隽隽   

  1. 南京理工大学软化学与功能材料教育部重点实验室 南京 210094
  • 收稿日期:2011-04-01 修回日期:2011-07-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:soong_ye@sohu.com
  • 基金资助:

    国家自然科学基金项目(No. 51077072)资助

Fabrication of Special-Type Nanoporous Anodic Alumina Templates

Ye Qiumei, Song Ye*, Liu Peng, Hu Junjun   

  1. Key Laboratory of Soft Chemistry and Functional Materials of Education of Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2011-04-01 Revised:2011-07-01 Online:2011-12-24 Published:2011-09-29
多孔阳极氧化铝(PAA)模板具有六角有序排列的柱形孔,且孔径均匀可调,加之其良好的机械和热稳定性,在纳米材料领域得到了广泛研究和应用。近年来,人们通过改变铝阳极氧化条件制备出了多种特殊型纳米PAA模板,并利用这些模板结合物理或化学方法成功地合成了多种新型纳米功能材料。本文在简要介绍常规纳米PAA模板制备的基础上,较全面地综述了诸如孔道呈分叉形、锯齿形、骨形、倒圆锥形,孔洞呈菱形、三角形、正方形,孔道或孔壁结构呈周期性变化等特殊型纳米PAA模板的制备,揭示了电场强度和电解液种类、温度在PAA孔洞形貌尺寸调控方面的重要性,并展望了这类模板的发展方向及应用前景。
Porous anodic alumina (PAA) templates have been used widely and studied extensively due to their excellent mechanical and thermal stabilities, highly-ordered hexagonal nanochannel-array architecture and controllable pore structures. In recent years, significant progress has been made in the field of PAA synthesis and a variety of special type PAA templates have been prepared by precisely adjusting the anodizing conditions. By means of the special templates, many novel functional nanomaterials have been synthesized successfully via physical or chemical processing routes. After a brief introduction to the fabrication methods of conventional PAA templates, this paper presents a comprehensive review on the fabrication approaches of PAA templates with special nanopore arrays (e.g., branched, serrated, bone-shaped or inverted cone nanopores); diamond, triangle or square pore patterns; modulated pore structures with different diameters, lengths, geometries, and periodicity. Several critical factors including the applied electric field, temperature, type and concentration of the electrolyte which determine the pore modulation of PAA are emphasized. Finally, the development trend and future prospects of the special templates are given. Contents 1 Introduction 2 Fabrication of conventional type PAA templates 3 Fabrication of special type PAA templates 3.1 In-plane or cylindrical PAA 3.2 Branched or serrated PAA 3.3 Bone-shaped or inverted conical PAA 3.4 PAA with periodically modulated pore structures 3.5 PAA with diamond, triangle, square pore patterns 3.6 PAA with nanopore gradients 4 Concluding remarks and outlook

中图分类号: 

()
[1] Jessensky O, Müller F, Gösele U. Appl. Phys. Lett., 1998, 72(10): 1173-1175
[2] Li A P, Müller F, Birner A, Nielsch K, Gösele U. Adv. Mater., 1999, 11(6): 483-487
[3] Sadasivan V, Richter C P, Menon L, Williams P F. AIChE J., 2005, 51(2): 649-655
[4] Sabzia R E, Kant K, Losic D. Electrochim. Acta, 2010, 55(5): 1829-1835
[5] Mei S L, Feng X D, Jin Z X. Macromolecules, 2011, 44(6): 1615-1620
[6] Guo Y G, Wan L J, Zhu C F, Yang D L, Chen D M, Bai C L. Chem. Mater., 2003, 15(3): 664-667
[7] Sulka G D, Brzòzka A, Zaraska L, Jaskua M. Electrochim. Acta, 2010, 55(14): 4368-4376
[8] Shirale D J, Bangar M A, Chen W, Myung N V, Mulchandani A. J. Phys. Chem. C, 2010, 114(31): 13375-13380
[9] Majumdar D, Saha S K. Appl. Phys. Lett., 2010, 96(18): art. no. 183113
[10] Chen N, Huang C S, Yang W L, Chen S H, Liu H B, Li Y J, Li Y L. J. Phys. Chem. C, 2010, 114(30): 12982-12986
[11] Hojati-Talemi P, Simon G P. J. Phys. Chem. C, 2010, 114(33): 13962-13966
[12] Yanagishita T, Sasaki M, Nishio K, Masuda H. Adv. Mater., 2004, 16(5): 429-432
[13] Li Z J, Zhang J L, Meng A L, Guo J Z. J. Phys. Chem. B, 2006, 110(45): 22382-22386
[14] Xiong G, Elam J W, Feng H, Han C Y, Wang H H, Iton L E, Curtiss L A, Pellin M J, Kung M, Kung H, Stair P C. J. Phys. Chem. B, 2005, 109(29): 14059-14063
[15] Yang C J, Wang S M, Liang S W, Chang Y H, Chen C. Appl. Phys. Lett., 2007, 90(3): art. no. 033104
[16] Gu D, Baumgart H, Abdel-Fattah T, Namkoong G. ACS Nano, 2010, 4(2): 753-758
[17] Hernandez-Sanchez B A, Chang K S, Scancella M T, Burris J L, Kohli S, Fisher E R, Dorhout P K. Chem. Mater., 2005, 17(24): 5909-5919
[18] Wang Q, Sun X, Luo S J, Sun L N, Wu X L, Cao M H, Hu C W. Cryst. Growth Des., 2007, 7(12): 2665-2669
[19] Zhang T, Wang X P, Fang Q F. J. Phys. Chem. C, 2010, 114(27): 11796-11800
[20] Wang Y C, Leu I C, Hon M H. J. Appl. Phys., 2004, 95(3): 1444-1449
[21] Hill J J, Cotton S P, Ziegler K J. Chem. Mater., 2009, 21(9): 1841-1846
[22] Johansson A, Lu J, Carlsson J O, Boman M. J. Appl. Phys., 2004, 96(9): 5189-5194
[23] Huang C, Jiang J, Lu M, Sun L, Meletis E I, Hao Y. Nano Lett., 2009, 9(12): 4297-4301
[24] Bae C H, Park S M, Park S C, Ha J S. Nanotechnology, 2006, 17(2): 381-384
[25] Evans P R, Zhu X H, Baxter P, McMillen M, McPhillips J, Morrison F D, Scott J F, Pollard R J, Bowman R M, Gregg J M. Nano Lett., 2007, 7(5): 1134-1137
[26] Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov I I, Bratkovsky A M, Hesse D, Alexe M. Nano Lett., 2009, 9(3): 1127-1131
[27] Masuda H, Hasegwa F, Ono S. J. Electrochem. Soc., 1997, 144(5): L127-L130
[28] Wang S, Yu G J, Gong J L, Li Q T, Xu H J, Zhu D Z, Zhu Z Y. Nanotechnology, 2006, 17(6): 1594-1598
[29] Yamauchi Y, Nagaura T, Inoue S. Chem. Asian J., 2009, 4: 1059-1063
[30] Ebihara K, Takahashi H, Nagayama M. J. Met. Finish. Soc. Jpn., 1983, 34: 548-553
[31] Nielsch K, Choi J, Schwirn K, Wehrspohn R B, Gösele U. Nano Lett., 2002, 2(7): 677-680
[32] Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T. Appl. Phys. Lett., 1997, 71(19): 2770-2772
[33] Asoh H, Nishio K, Nakao M, Tamamura T, Masuda H. J. Electrochem. Soc., 2001, 148(4): 152-156
[34] Ono S, Saito M, Asoh H. Electrochem. Solid-State Lett., 2004, 7(7): B21-B24
[35] Chu S Z, Wada K, Inoue S, Isogai M, Yasumori A. Adv. Mater., 2005, 17(17): 2115-2119
[36] Lee W, Ji R, Gösele U, Kornelius N. Nat. Mater., 2006, 5: 741-747
[37] Chu S Z, Wada K, Inoue S, Isogai M, Katsuta Y, Yasumori A. J. Electrochem. Soc., 2006, 153(9): B384-B391
[38] Cojocaru C S, Padovani J M, Wade T, Mandoli C, Jaskierowicz G, Wegrowe J E, Morral A F I, Pribat D. Nano Lett., 2005, 5(4): 675-680
[39] Sanz R, Hernández-Vélez M, Pirota K R, Baldonedo J L, Vázquez M. Small, 2007, 3(3): 434-437
[40] Su Z X, Hhner G, Zhou W Z. J. Mater. Chem., 2008, 18: 5787-5795
[41] Su Z X, Zhou W Z. Adv. Mater., 2008, 20: 3663-3667
[42] Gao T, Meng G, Zhang J, Sun S, Zhang L. Appl. Phys. A: Mater. Sci. Process, 2002, 74(3): 403-406
[43] Ho A Y Y, Gao H, Lam Y C, Rodríguez I. Adv. Funct. Mater., 2008, 18(14): 2057-2063
[44] Ho A Y Y, Yeo L P, Lam Y C, Rodríguez I. ACS Nano, 2011, 5(3): 1897-1906
[45] Li J, Papadopoulos C, Xu J. Nature, 1999, 402: 253-254
[46] Mahima S, Kannan R, Komath I, Aslam M, Pillai V K. Chem. Mater., 2008, 20(3): 601-603
[47] Li C Y, Liu B, Zhao J P, Wang J F, Hu B B, Du Z L. Chinese Sci. Bull., 2009, 54(5): 719-722
[48] Subhramannia M, Ramaiyan K, Aslam M, Pillai V K. J. Electroanal. Chem., 2009, 627: 58-62
[49] Xu Q, Meng G, Han F, Zhao X, Kong M, Zhu X. Mater. Lett., 2009, 63(16): 1431-1434
[50] Meng G, Jung Y J, Cao A, Vajtai R, Ajayan P M. Proc. Natl. Acad. Sci. USA, 2005, 102(20): 7074-7078
[51] Chen S, Ling Z, Hu X, Li Y. J. Mater. Chem., 2009, 19: 5717-5719
[52] Cheng W, Steinhart M, Gösele U, Wehrspohn R B. J. Mater. Chem., 2007, 17: 3493-3495
[53] Zhu X F, Liu L, Song Y, Jia H B, Yu H D, Xiao X M, Yang X L. Monatsh. Chem., 2008, 139: 999-1003
[54] Li D D, Jiang C H, Jiang J H, Lu J G. Chem. Mater., 2009, 21(2): 253-258
[55] Li D D, Zhao L, Jiang C H, Lu J G. Nano Lett., 2010, 10(8): 2766-2771
[56] Xu T T, Fisher F T, Brinson L C, Ruoff R S. Nano Lett., 2003, 3(8): 1135-1139
[57] Yanagishita T, Yasui K, Kondo T, Kawamoto Y, Nishio K, Masuda H. Chem. Lett., 2007, 36(4): 530-531
[58] Nagaura T, Takeuchi F, Inoue S. Electrochim. Acta, 2008, 53(5): 2109-2114
[59] Yamauchi Y, Nagaura T, Ishikawa A, Chikyow T, Inoue S. J. Am. Chem. Soc., 2008, 130(31): 10165-10170
[60] Yamauchi Y, Nagaura T, Takai K, Suzuki N, Sato K, Fukata N, Inoue S, Kishimoto S. J. Phys. Chem. C, 2009, 113(22): 9632-9637
[61] Yamauchi Y, Wang L, Ataee-Esfahani H, Fukata N, Nagaura T, Inoue S. J. Nanosci. Nanotechno., 2010, 10(7): 4384-4387
[62] Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gösele U. Nat. Nanotechnol., 2008, 3: 234-239
[63] Lee W, Scholz R, Gösele U. Nano Lett., 2008, 8(8): 2155-2160
[64] Bruschi L, Mistura G, Liu L, Lee W, Gösele U, Coasne B. Langmuir, 2010, 26(14): 11894-11898
[65] Lee W, Kim J. Nanotechnology, 2010, 21(48): art. no. 485304
[66] Losic D, Lillo M, Losic D. Small, 2009, 5(12): 1392-1397
[67] Losic D, Losic D. Langmuir, 2009, 25(10): 5426-5431
[68] Masuda H, Asoh H, Watanabe M, Nishio K, Nakao M, Tamamura T. Adv. Mater., 2001, 13(3):189-192
[69] Asoh H, Ono S, Hirose T, Nakao M, Masuda H. Electrochim. Acta, 2003, 48: 3171-3174
[70] Smith J T, Hang Q L, Franklin A D, Janes D B, Sands T D. Appl. Phy. Lett., 2008, 93(4): art. no. 043108
[71] Kustandi T S, Loh W W, Gao H, Low H Y. ACS Nano, 2010, 4(5): 2561-2568
[72] Kant K, Low S P, Marshal A, Shapter J G, Losic D. ACS Appl. Mater. Inter., 2010, 2(12): 3447-3454
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[8] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[9] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[10] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[11] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[14] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[15] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.