English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2576-2587 前一篇   后一篇

• 综述与评论 •

应用先进光谱技术研究无机离子的环境界面化学

李伟1,2, 罗磊1, 张淑贞1*   

  1. 1. 中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室 北京 100085;
    2. 美国特拉华大学特拉华环境研究所 特拉华州 19713
  • 收稿日期:2011-03-01 修回日期:2011-06-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:szzhang@rcees.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 40730740,20921063)资助

Towards A Molecular Scale Understanding of the Chemistry of Inorganic Ions at Environmental Interfaces: Application of Spectroscopic Techniques

Li Wei1,2, Luo Lei1, Zhang Shuzhen1*   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. Delaware Environmental Institute, University of Delaware, Newark 19713, USA
  • Received:2011-03-01 Revised:2011-06-01 Online:2011-12-24 Published:2011-09-29
发生在环境界面的吸附-解吸和氧化-还原等反应对于污染物在环境介质间传输、转化以及归趋起着重要的调控作用。传统的研究方法虽然可以在实验室模拟并进而描述污染物环境界面过程,但是不能揭示界面反应机制,限制了对污染物环境界面行为的认识。近二十年来,各种谱学技术(例如X射线吸收精细结构和傅里叶红外光谱等)应用于环境界面反应的研究,推动了这一领域研究的发展,特别是在分子水平研究污染物的环境界面过程。通过现代光/波谱技术原位分析,可以实时获取界面反应的定量与结构信息,从而更准确地判断反应机制,极大促进了对污染物在多介质环境界面迁移转化规律的认识。本文将在概述环境界面化学反应的基础上,针对无机离子在环境界面的反应过程,重点介绍几种关键光/波谱技术(X射线吸收精细结构光谱、傅里叶红外光谱、拉曼光谱、核磁共振谱和穆斯堡尔谱等)在环境界面化学研究中的应用,并展望其在环境界面过程研究中的应用前景。
Environmental interfacial reactions such as adsorption-desorption and oxidation-reduction are of vital importance in controlling the transportation, transformation and fate of pollutants. Traditional macroscopic studies have well modeled and described those environmental interfacial behaviors, but can not reveal the reaction mechanisms, such that the chemical behaviors of pollutants in natural environment can not be predicted. With the application of spectroscopic techniques, especially X-ray absorption fine structure (XAFS) and Fourier transform infrared (FTIR) spectroscopy, molecular information has been provided to interpret the mechanisms, leading to a better understanding of environmental interfacial phenomenon. These studies are pushing the development of environmental chemistry from a macroscopic level to a molecular level. Modern spectroscopic techniques allow the in-situ and real-time investigation of the chemical reactions occurring at solid/water interface, providing both quantitative and structural information to elucidate the interfacial processes. Results from these studies largely improved the current understanding of the movement and transformation of pollutants among different environmental media (soil, air and water) and the prediction of their partitioning and transportation. This work starts a simple overview of interfacial reactions, and then focuses mainly on adsorption-desorption behavior as examples to introduce the applications of several spectroscopic techniques (i.e. XAFS, FTIR, NMR, Raman and Mössbauer), and finally ends with a discussion of the constraints and promise of these techniques. Contents 1 Introduction 2 Interfacial reactions in natural environment 3 Application of spectroscopic techniques in environmental interfacial chemistry 3.1 X-ray absorption fine structure spectroscopy 3.2 Fourier-transform infrared spectroscopy 3.3 Raman spectroscopy 3.4 Nuclear magnetic resonance 3.5 Mössbauer spectroscopy 4 The emerging direction of spectroscopic research in environmental interfacial chemistry 4.1 Development in methodology 4.2 Application of multiple techniques 4.3 Comination of quantum chemical calculation 5 Conclusions and perspective

中图分类号: 

()
[1] Al-Abadleh H A, Grassian V H. Surf. Sci. Rep., 2003, 52: 63-161
[2] Brown G E. Science, 2001, 294: 67-69
[3] 汤鸿霄(Tang H X). 环境科学学报(Acta Scientiae Circumstantiae), 2000, 20: 1-7
[4] 汤鸿霄(Tang H X). 化学进展(Progress in Chemistry), 2000, 12: 415-422
[5] Stumm W, Morgan J J. Aquatic Chemistry, Chemical Equilibrium and Rates in Natural Waters, 3rd ed. New York: John Wiley & Sons, Inc. 1996
[6] Sposito G. The Surface Chemistry of Natural Particles. New York: Oxford University Press, 2004
[7] 汤鸿霄(Tang H X). 环境科学学报 (Acta Scientiae Circumstantiae),2005, 25:1-4
[8] Scheidegger A M, Sparks D L. Soil Sci., 1996, 161: 813-831
[9] Bradl H B. J. Colloid Interface Sci., 2004, 277: 1-18
[10] Sparks D L. Environmental Soil Chemistry. 2nd ed. San Diego: Academic Press, 2003
[11] Brown G E, Parks G A. Int. Geol. Rev., 2001, 43: 963-1073
[12] Catalano J G, Park C, Fenter P, Zhang Z. Geochim. Cosmochim. Acta, 2008, 72: 1986-2004
[13] Scheidegger A M, Lamble G M, Sparks D L. Environ. Sci. Technol., 1996, 30: 548-554
[14] Scheidegger A M, Lamble G M, Sparks D L. J. Colloid Interface Sci., 1997, 186: 118-128
[15] Lafferty B, Ginder-Vogel M, Sparks D L. Environ. Sci. Technol., 2010, 44: 8460-8466
[16] Schulze D G, Bertsch P M. Adv. Agron., 1995, 55: 1-66
[17] Brown G E, Catalano J G, Templeton A S, Trainor T P, Farges F, Bostick B C, Kendelewicz T, Doyle C S, Spormann A M, Revill K, Morin G, Juillot F, Calas G. Phys. Scripta., 2005, 115: 80-87
[18] Hayes K F, Roe A L, Brown G E, Hodgson K O, Leckie J O, Parks G A. Science, 1987, 238: 783-786
[19] Brown G E, Parks G A. Rev. Geophys., 1989, 27: 519-533
[20] Arai Y, Lanzirotti A, Sutton S R, Newville M, Dyer J, Sparks D L. Environ. Sci. Technol., 2006, 40: 673-679
[21] Landrot G, Ginder-Vogel M, Sparks D L. Environ. Sci. Technol., 2010, 44: 143-149
[22] Ginder-Vogel M, Landrot G, Fischel J S, Sparks D L. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 16124-16128
[23] Manceau A, Tamura N, Marcus M A, MacDowell A A, Celestre R S, Sublett R E, Sposito G, Padmore H A. Am. Mineral., 2002, 87: 1494-1499
[24] Pan G, Qin Y, Li X, Hu T, Wu Z, Xie Y. J. Colloid Interface Sci., 2004, 271: 28-34
[25] Luo L, Zhang S Z, Shan X Q, Jiang W, Zhu Y G, Liu T, Xie Y N, McLaren R G. Environ. Toxicol. Chem., 2006, 25: 3118-3124
[26] Manceau A, Matynia A. Geochim. Cosmochim. Acta, 2010, 74: 2556-2580
[27] Liu W J, Zhu Y G, Hu Y, Williams P N, Gault A G, Meharg A A, Charnock J M, Smith F A. Environ. Sci. Technol., 2006, 40: 5730-5736
[28] Huang Z C, Chen T B, Lei M, Liu Y R, Hu T D. Environ. Sci. Technol., 2008, 42: 5106-5111
[29] Liu S Q, Jing C Y, Meng X G. Sci. Total Environ., 2008, 392: 137-144
[30] Stumm W. Geoderma, 1986, 38: 19-30
[31] O’Day P A, Rehr J J, Zabinsky S I, Brown G E. J. Am. Chem. Soc., 1994, 116: 2938-2949
[32] Arai Y, Elzinga E J, Sparks D L. J. Colloid Interface Sci., 2001, 235: 80-88
[33] Fendorf S, Eick M J, Grossl P, Sparks D L. Environ. Sci. Technol., 1997, 31: 315-320
[34] Waychunas G A, Rehr J J, Fuller C C, Davis J A. Geochim. Cosmochim. Acta, 2003, 67: 1031-1043
[35] Waychunas G A, Fuller C C, Davis J A. Geochim. Cosmochim. Acta, 2002, 66: 1119-1137
[36] Luo L, Zhang S Z. Sci. China Chem., 2010, 53: 2529-2538
[37] Isaure M, Fayard B, Sarret G, Pairis S, Bourguignon J. Spectrochimica Acta B, 2006, 61: 1242-1252
[38] Prietzel J, Thieme J, Eusterhues K, Eichert D. Eur. J. Soil Sci., 2007, 58: 1027-1041
[39] McQuillan A J. Adv. Mater., 2001, 13: 1034-1038
[40] 杨晓芳 (Yang X F), 王东升 (Wang D S),孙中溪 (Sun Z X),刘会娟 (Liu H J),Allan Holmgren. 化学进展 (Progress in Chemistry),2010, 22: 1186-1195
[41] Lefevre G. Adv. Colloid Interface Sci., 2004, 107: 109-123
[42] 贺泓(He H),刘永春( Liu Y C),曲久辉( Qu J H). 环境科学学报(Acta Scientiae Circumstantiae),2009, 29: 11-20
[43] Russel J D, Parfitt R L, Fraser A R, Farmer V C. Nature, 1974, 248: 220-221
[44] Arai Y, Sparks D L. J. Colloid Interface Sci., 2001, 241: 317-326
[45] Tejedor-Tejedor M I, Anderson M A. Langmuir, 1990, 6: 602-611
[46] Connor P A, McQuillan A J. Langmuir, 1999, 15: 2916-2921
[47] Hug S J. J. Colloid Interface Sci., 1997, 188: 415-422
[48] Luengo C, Brigantea M, Antelo J, Avena M. J. Colloid Interface Sci., 2006, 300: 511-518
[49] Parikh S J, Lafferty B J, Sparks D L. J. Colloid Interface Sci., 2008, 320: 177-185
[50] Loring J S, Sandstrom M H, Noren K, Persson P. Chem. Eur. J., 2009, 15: 5063-5072
[51] Myneni S C B, Traina S J, Waychunas G A, Logan T J. Geochim Cosmochim Acta, 1998, 62: 3285-3300
[52] Goldberg S, Johnston C T. J. Colloid Interface Sci., 2001, 234: 204-216
[53] Jia Y F, Xu L Y, Feng Z, Demopoulos G P. Environ. Sci. Technol., 2006, 40: 3248-3253
[54] Burton E D, Bush R T, Johnston S G, Hocking R K, Sullivan L A, Parker G K. Environ. Sci. Technol., 2009, 43: 9202-9207
[55] Müller K, Ciminelli V S T, Dantas M S S, Willscher S. Water Res., 2010, 44: 5660-5672
[56] Liu R, Frost R, Martens W N. Water Res., 2009, 43: 1323-1329
[57] Bhandari D, Wells S M, Retterer S T, Sepaniak M J. Anal. Chem., 2009, 81: 8061-8067
[58] Bleam W F, Pfeffer P E, Goldberg S, Taylor R W, Dudley R. Langmuir, 1991, 7: 1702-1712
[59] Lookman R, Grobet P, Merckx R, Vlassak K. Eur. J. Soil Sci., 1994, 45: 37-44
[60] Lookman R, Grobet P, Merckx R, van Riemsdijk W H. Geoderma, 1997, 80: 369-388
[61] Kim Y, Kirkpatrick R J. Eur. J. Soil Sci., 2004, 55: 243-251
[62] Van Emmerik T J, Sandstrom D E, Antzutkin O N, Angove M J, Johnson B B. Langmuir, 2007, 23: 3205-3213
[63] Li W, Feng J, Kwon K D, Kubicki J D, Phillips B L. Langmuir, 2010, 26: 4753-4761
[64] Kim Y, Kirkpatrick R J, Cygan R T. Geochim. Cosmochim. Acta, 1996, 60: 4095-4106
[65] Kim Y, Kirkpatrick R J. Geochim. Cosmochim. Acta, 1997, 61: 5199-5208
[66] Labouriau A, Johnston C T, Earl W L. Nuclear Magnectic Resonance Spectroscopy in Environmental Geochemistry, New York: Oxford University Press, 1997
[67] Phillips B L, Casey W H, Karlsson M. Nature, 2000, 404: 379-382
[68] Casey W H, Phillips B L. Geochim. Cosmochim. Acta, 2001, 65: 705-726
[69] Stewart T, Trudell D, Alam T, Ohlin A, Lawler C, Casey W H, Jett S, Nyman M. Environ. Sci. Technol., 2009, 43: 5416-5422
[70] Nordin J P, Sullivan D J, Phillips B L, Casey W H. Geochim. Cosmochim. Acta, 63: 3513-3524
[71] Cochiara S G, Phillips B L. Clays Clay Min., 2008, 56: 90-99
[72] Nielsen U G, Paik Y, Julmis K, Schoonen M A A, Reeder R J, Grey C P. J. Phys. Chem. B, 2005, 109: 18310-18315
[73] Kim J, Nielsen U G, Grey C P. J. Am. Chem. Soc., 2008, 130: 1285-1295
[74] Williams A G B, Scherer M M. Environ. Sci. Technol., 2004, 38: 4782-4790
[75] Larese-Casanova P, Scherer M M. Environ. Sci. Technol., 2007, 41: 471-477
[76] Cwiertny D M, Handler R M, Schaefer M V, Grassian V H, Scherer M M. Geochim. Cosmochim. Acta, 2008, 72: 1365-1380
[77] Larese-Casanova P, Scherer M M. Hyper. Inter., 2007, 174: 111-119
[78] Larese-Casanova P, Cwiertny D M, Scherer M M. Environ. Sci. Technol., 2010, 44: 3765-3771
[79] Amstaetter K, Borch T, Larese-Casanova P, Kappler A. Environ. Sci. Technol., 2010, 44: 102-108
[80] Eng P J, Trainor T P, Brown G E, Waychunas G A, Newville M, Sutton S R, Rivers M L. Science, 2000, 288: 1029-1033
[81] Trainor T P, Chaka A C, Eng P J, Newville M, Catalano J G, Waychunas G A, Brown G E. Surf. Sci., 2004, 573: 204-224
[82] Jun Y S, Ghose S K, Trainor T P, Eng P J, Martin S T. Environ. Sci. Technol., 2007, 41: 3918-3925
[83] Ghose S K, Waychunas G A, Eng P J, Trainor T P. Geochim. Cosmochim. Acta, 2010, 74: 1943-1953
[84] Park C, Fenter P, Sturchio N C, Regalbuto J R. Phys. Rev. Lett., 2005, 94: art. no. 076104
[85] Tanwar K S, Petitto S C, Ghose S K, Eng P J, Trainor T P. Geochim. Cosmochim. Acta, 2009, 73: 4346-4365
[86] Tanwar K S, Petitto S C, Ghose S K, Eng P J, Trainor T P. Geochim. Cosmochim. Acta, 2008, 72: 3311-3325
[87] Harrington R, Hausner D B, Bhandari N, Strongin D R, Chapman K W, Chupas P J, Middlemiss D S, Grey C P, Parise J B. Inorg. Chem., 2010, 49: 325-330
[88] Fitts J P, Machesky M L, Wesolowski D J, Shang X M, Kubicki J D, Flynn G W, Heinz T F, Eisenthal K B. Chem. Phys. Lett., 2005, 411: 399-403
[89] Fitts J P, Shang X M, Flynn G W, Heinz T F, Eisenthal K B. J. Phys. Chem. B, 2005, 109: 7981-7986
[90] Musorrafiti M J, Konek C T, Hayes P L, Geiger F M. J. Phys. Chem. C, 2008, 112: 2032-2039
[91] Gibbs-Davis J M, Kruk J J, Konek C T, Scheidt K A, Geiger F M. J. Am. Chem. Soc., 2008, 130: 15444-15447
[92] Elzinga E J, Peak D, Sparks D L. Geochim. Cosmochim. Acta, 2001, 65: 2219-2230
[93] Hyun S P, Cho Y H, Kim S J, Hahn P S. J. Colloid Interface Sci., 2000, 222: 254-261
[94] Hyun S P, Hayes K F. J. Miner. Sco. Korea, 2004, 17: 1-9
[95] Flogeac K, Guillon E, Aplincourt M. Environ. Sci. Technol., 2004, 38: 3098-3103
[96] Kwon K D, Kubicki J D. Langmuir, 2004, 20: 9249-9254
[97] Paul K W, Borda M J, Kubicki J D, Sparks D L. Langmuir, 2005, 21: 11071-11078
[98] Bhandari N, Hausner D B, Kubicki J D, Strongin D R. Langmuir, 2010, 26: 16246-16253
[99] Sherman D M, Randall S R. Geochem. Cosmochim. Acta, 2003, 67: 4223-4230
[100] He G, Zhang M, Pan G. J. Phys. Chem. C, 2009, 113: 21679-21686
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[3] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[4] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[5] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[6] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[7] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[8] 刘煦阳, 段潮舒, 蔡文生, 邵学广. 可解释深度学习在光谱和医学影像分析中的应用[J]. 化学进展, 2022, 34(12): 2561-2572.
[9] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[10] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[11] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[12] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[13] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.