English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2560-2567 前一篇   后一篇

• 综述与评论 •

自修复聚合物材料的研究进展

祁恒治, 赵蕴慧, 朱孔营, 袁晓燕*   

  1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300072
  • 收稿日期:2011-04-01 修回日期:2011-06-01 出版日期:2011-12-24 发布日期:2011-09-29

Research Progresses in Self-Healing Polymer Materials

Qi Hengzhi, Zhao Yunhui, Zhu Kongying, Yuan Xiaoyan*   

  1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
  • Received:2011-04-01 Revised:2011-06-01 Online:2011-12-24 Published:2011-09-29
针对聚合物材料在使用过程中难以检测的损伤,人们引入了自修复概念。本文就近年来自修复聚合物材料的研究进展作了系统综述。根据自修复过程是否使用修复剂,聚合物材料(包括聚合物基复合材料)的自修复可分为外援型和本征型两大类。外援型自修复借助于外加修复剂实现自修复,主要包括埋植微胶囊化修复剂和埋植中空纤维化修复剂两种方法。微裂纹的破坏使微胶囊或中空纤维释放修复剂,修复剂发生化学反应,键合裂纹面,达到自修复的效果。这种方法相对比较简单,修复效果较好,但不能重复进行,而且可选用的修复剂种类有限。本征型自修复则借助于体系内存在的Diels-Alder反应、动态共价化学、双硫键反应、含有氢键的超分子结构、π-π堆叠及离子聚合物等来完成,这些特殊的分子结构所涉及的化学反应是可逆的。本征型自修复聚合物材料的制备过程较为复杂,但这种自修复可以反复多次有效,从而延长了聚合物材料的使用寿命。本文针对以上两大类自修复聚合物材料体系的特点和应用进行综述,并展望其发展方向。
Self-healing was put forward to cope with slight damages in polymer materials which are difficult to detect. Research progress in self-healing polymer materials in recent years is summarized in this paper. According to the healing agents employing or not, self-healing methods in polymer materials or polymer composites can be classified into two categories, namely, extrinsic and intrinsic. The extrinsic self-healing polymer materials accomplish self-healing with the aid of self-healing agents incorporated in microcapsules or hollow-fibers. The self-healing agents are released when microcapsules or hollow-fibers are attacked by microcracks, and then reactions involved self-healing take place and the crack surfaces are bonded together to achieve self-healing. This method performs easily and efficiently, but the self-healing process can not be repeated and the candidates of self-healing agents are limited. On the other hand, the intrinsic self-healing polymers bring into effect with the help of Diels-Alder reactions, dynamic covalent chemistry, disulfide-bond reactions, supramolecular structure with hydrogen-bond, π-π stacking, ionomes and so on. Furthermore, the chemical reactions related to these special molecular structures are reversible. Though the preparation of intrinsic self-healing polymers is more complicated, the self-healing process is efficient in repeatable manner. So, the durability of polymer materials can be extended. This paper reviews mainly on the specialities and applications of the above self-healing methods in polymer materials. Contents 1 Introduction 2 Extrinsic self-healing 2.1 Microcapsules 2.2 Hollow-fibers 3 Intrinsic self-healing 3.1 Diels-Alder reactions 3.2 Dynamic covalent chemistry 3.3 Disulfide-bond self-healing 3.4 Hydrogen-bond self-healing 3.5 π-π stacking 3.6 Ionomers 3.7 Other methods 4 Conclusion and outlook

中图分类号: 

()
[1] Mauldin T C, Kessler M R. Int. Mater. Rev., 2010, 55: 317-346
[2] White S R, Sottos N R, Geubelle P H, Moore J S, Kessler M R, Sriram S R, Brown E N, Viswanathan S. Nature, 2001, 409: 794-817
[3] Burattini S, Greenland B W, Chappell D, Colquhoun H M, Hayes W. Chem. Soc. Rev., 2010, 39: 1973-1985
[4] Yuan Y C, Yin T, Rong M Z, Zhang M Q. Express. Polym. Lett., 2008, 2: 238-250
[5] Trask R S, Williams H R, Bond I P. Bioinsp. Biomim., 2007, 2: 1-9
[6] 汪海平(Wang H P), 容敏智(Rong M Z), 章明秋(Zhang M Q). 化学进展(Progress in Chemistry), 2010, 12(20): 2397-2047
[7] Wu D Y, Meure S, Solomon D. Prog. Polym. Sci., 2008, 33: 479-522
[8] Murphy E B, Wudl F T. Prog. Polym. Sci., 2010, 35: 223-251
[9] Wojtecki R J, Meador M A, Rowan S J. Nat. Mater., 2011, 10: 14-27
[10] Syrett J A, Becer R B, Haddleton D M. Polym. Chem., 2010, 1: 978-987
[11] Jackson A C, Bartelt J A, Marczewski K, Sottos N R, Braun P U. Macromol. Rapid Commun., 2011, 32: 82-87
[12] Yin T, Rong M Z, Zhang M Q, Yang G C. Compos. Sci. Technol., 2007, 67: 201-212
[13] Xiao D S, Yuan Y C, Rong M Z, Zhang M Q. Adv. Funct. Mater., 2009, 19: 2289-2296
[14] Xiao D S, Yuan Y C, Rong M Z, Zhang M Q. Polymer, 2009, 50: 2967-2975
[15] Yuan Y C, Rong M Z, Zhang M Q, Chen J, Yang G C, Li X M. Marcomolecules, 2008, 41: 5197-5202
[16] Yuan Y C, Rong M Z, Zhang M Q, Chen J, Yang G C, Li X M. Smart Mater. Struct., 2011, 20: 1-11
[17] Yang J L, Keller M W, Moore J S, White S R, Sottos S R. Macromolecules, 2008, 41: 9650-9655
[18] 方征平(Fang Z P), 羊海棠(Yang H T), 徐立华(Xu L H), 顾爱娟(Gu A J), 佟立芳(Tong L F), 许忠斌(Xu Z B). 航空材料学报(Journal of Aeronautical Materails), 2006, 26(3): 335-336
[19] Fu X Y, Fang Z P, Yang H T, Tong L F. Chin. Chem. Lett., 2008, 19: 655-657
[20] Keller M W, White S R, Sottos N R. Adv. Funct. Mater., 2007, 17: 2399-2404
[21] Cho S H, Andersson H M, White S R, Sottos N R, Braun P V. Adv. Mater., 2006, 18: 997-1000
[22] Mangun C L, Mader A C, Sottos N R,White S R. Polymer, 2010, 51: 4063-4068
[23] Kessler M R. Proc. IMech E Part G J. Aerospace Eng., 2007, 221: 479-495
[24] Tan P S, Zhang M Q, Bhattacharyya D. IOP Conf. Series: Mater. Sci. Eng., 2009, 4: 1-5
[25] Hamilton A R, Sottos N R, White S R. Adv. Mater., 2010, 22: 5159-5163
[26] Peterson A M, Jensen R E, Palmese G R. ACS Appl. Mat. Interfaces, 2010, 4: 1141-1149
[27] Deng G H, Tang C M, Li F Y, Jiang H F, Chen Y M. Macromolecules, 2010, 43: 1191-1194
[28] Amamoto Y, Kamada J, OtsukaH, Takahara A, Matyjaszewski K. Angew. Chem. Int. Ed., 2011, 50: 1-5
[29] Nicolay R, Kamada J, Wassen A V, Matyjaszewki K. Macromolecules, 2010, 43: 4355-4361
[30] Canadell-ayats J, Goossens J G, Klumperman L L, Leibler L. WO2010128007-A1
[31] Harreld J H, Wong M S, Hansma P K, Morse D E, Stucky G D. US 2004007792-A1
[32] Cordier P, Tournilhac F, Ziakovic C S, Leibler L. Nature, 2008, 451: 977-980
[33] Burattini S, Colquhoun H M, Greenland B W, Hayes W. Faraday Discuss., 2009, 143: 251-264
[34] Burattini S, Greenland B W, Merino D H, Weng W G, Seppala J, Colquhoun H M., Hayes W, Mackay M E, Hamley I W, Rowan S J. J. Am. Chem. Soc., 2010, 132: 12051-12058
[35] Blaiszik B J, Kramer S L B, Olugebefola S C, Moore J S, Sottos N R, White S R. Annu. Rev. Mater. Res., 2010, 40: 179-211
[36] Varley R J, van der Zwaag S. Acta Materialia, 2008, 56: 5737-5750
[37] Varley R J, van der Zwaag S. Polym. Test., 2008, 27: 11-19
[38] Dirama T E, Varshney V, Anderson K L, Shumaker J A, Johnson J A. Mech. Time-Depend. Mater., 2008, 12: 205-220
[39] Varley R J, Shen S, van der Zwaag S. Polymer, 2010, 51: 679-686
[40] Varley R J, van der Zwaag S. Polym. Int., 2010, 59: 1031-1038
[41] Kalista S J, Ward T C. J. R. Soc. Interface, 2007, 4: 405-411
[42] Kalista S J, Ward T C, Oyetunji Z. Mech. Adv. Mater. Struct., 2007, 14: 391-397
[43] Ghosh B, Urban M W. Science, 2009, 323: 1458-1460
[44] Yang F, Pitchumani R. Macromolecules, 2002, 35: 3213-3224
[45] Chung C M, Roh Y S, Cho S Y, Kim J G. Chem. Mater., 2004, 16: 3982-3984
[46] Ratna D, Karger-Kocsis J. J. Mater. Sci., 2008, 43: 254-269
[47] Li G Q, Nettles D. Polymer, 2010, 51: 755-762
[48] Rodriguez E D, Luo X F, Mather P T. ACS Appl. Mater. Interfaces, 2011, 3: 152-161
[1] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[4] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.
[5] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[6] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[7] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[8] 程龙, 于大江, 尤加健, 龙腾, 陈素素, 周传健. 有机硅自修复材料[J]. 化学进展, 2018, 30(12): 1852-1862.
[9] 张瑞, 刘璇, 纪红兵*. 天然香料纳微胶囊中间体[J]. 化学进展, 2018, 30(1): 29-43.
[10] 伍宏伟, 陈亚运, 饶才辉, 刘传祥*. 含CH基的阴离子受体[J]. 化学进展, 2016, 28(10): 1501-1514.
[11] 韦存茜, 严杰, 唐浩, 张庆华, 詹晓力, 陈丰秋. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1): 9-17.
[12] 安光明, 凌世全, 王智伟, 栾琳, 吴天准. 基于微纳结构液体灌注的超滑表面的制备与应用[J]. 化学进展, 2015, 27(12): 1705-1713.
[13] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[14] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[15] 王赛, 吴斌, 段军飞, 方江邻*, 谌东中. 基于脲基氢键组装的功能超分子凝胶[J]. 化学进展, 2014, 26(01): 125-139.
阅读次数
全文


摘要

自修复聚合物材料的研究进展