English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2550-2559 前一篇   后一篇

• 综述与评论 •

取向结构和梯度分布医用材料的制备及应用

邢东明, 马列*, 高长有*   

  1. 教育部高分子合成与功能构造重点实验室 浙江大学高分子科学与工程学系 杭州 310027
  • 收稿日期:2011-03-01 修回日期:2011-06-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:liema@zju.edu.cn; cygao@mail.hz.zj.cn
  • 基金资助:

    国家自然科学基金项目(No.20934003)和国家重点基础研究发展计划(973)项目(No.2011CB606203)资助

Preparation and Applications of Ordered and Gradient Scaffolds in Regenerative Medicine

Xing Dongming, Ma Lie*, Gao Changyou*   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2011-03-01 Revised:2011-06-01 Online:2011-12-24 Published:2011-09-29
组织器官缺损或功能损失是人类健康所面临的重大危害,具有特定结构和组成的再生医学材料是实现组织再生与修复的关键和物质基础。本文对具有取向结构和梯度分布的再生医学材料的制备方法及其生物学性能进行了综述。与传统的再生医学材料相比,取向结构使得细胞在支架中呈取向分布和生长,有利于营养物质及代谢产物的传递,可用于构建具有取向结构的三维组织。具有物理性能、化学组成、生物因子梯度分布的再生医学材料能够调控细胞在梯度方向的黏附、迁移和分化等行为。基于仿生学原理设计的具有取向结构和梯度分布的再生医学材料为缺损组织或器官的再生与修复提供了更适宜的微环境,可望获得更出色的再生修复效果。
The tissue loss or organ failure, resulting from trauma or diseases, is a major concern in human healthcare. The recent development of regenerative medicine by combing the cells and degradable scaffolds offers a unique pathway to recreate tissues and organs with high bioactivity and biomimetic structures. This article reviews the state-of-art of the ordered and gradient scaffolds in terms of their preparation methods and biological performance. In contrast with the homogeneous counterpart, the ordered scaffolds facilitate delivery of nutrients and metabolites, and can guide cell growth, distribution and new tissue formation in vitro, leading to construction of 3D-engineered tissues with ordered cells and extracellular matrix. On the other hand, the gradient cues (e.g. physical, chemical and biological properties) incorporated into the 3D scaffolds can create a microenvironment governing the cell behaviors such as migration rate and direction as well as differentiation, and thereby guiding the tissue regeneration. The methods of phase separation, electrospinning, injection and centrifugation are usually employed to prepare the ordered and gradient 2D substrate and 3D scaffolds. The biological performance of these scaffolds is discussed. Wish such a structure mimicking the native tissue-like environment, the scaffolds are expected to show exceptional advantages in regeneration of tissues and organs of better functions and structures. Contents 1 Introduction 2 Ordered regenerative medicine materials and their preparation 2.1 Phase separation/directional freeze-drying 2.2 Electrospinning 2.3 Other methods 3 Gradient regenerative medicine materials and their preparation 3.1 Cell migration and gradient surface 3.2 Preparation of 3D gradient medical material 4 Conclusion and perspectives

中图分类号: 

()
[1] Langer R, Vacanti J. Tissue engineering Science, 1993, 260: 920-926
[2] Liu W, Cui L, Cao Y L. Tissue Engineering, 2003, 9: 17-30
[3] Yoshizato K. Experimental Medicine, 1997, 15: 2152-2158
[4] Daar A S, Greenwood H L. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1(3): 179-184
[5] Gjorevski N, Nelson C M. Cytokine & Growth Factor Reviews, 2009, 20, 5: 459-465
[6] Vogel V, Sheetz M. Nature Reviews Molecular Cell Biology, 2006, 7: 265-275
[7] Leong K F, Chua C K, Sudarmadjia N, Yeong W Y. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1: 140-152
[8] Friedl P, Bröcker E B. Cellular and Molecular Life Sciences, 2000, 57: 41-64
[9] Singhvi R, Kumar A, Lopez G P, Stephanopoulos G N, Wang D I, Whitesides G M, Ingber D E. Science, 1994, 264: 696-698
[10] Smith L A, Ma P X. Colloids and Surfaces B: Biointerfaces, 2004, 39: 125-131
[11] Ma P X, Zhang R Y. Journal of Biomedical Materials Research Part A, 2001, 56: 469-477
[12] Zmora S, Glicklis R, Cohen S. Biomaterials, 2002, 23: 4087-4094
[13] Yang F, Qu X, Cui W J, Bei J Z, Yu F Y, Lu S B, Wang S G. Biomaterials, 2006, 27: 4923-4933
[14] Stokolsa S, Tuszynski M K. Biomaterials, 2004, 25: 5839-5846
[15] Stokolsa S, Tuszynski M H. Biomaterials, 2006, 27: 443-451
[16] Pham Q P, Sharma U, Mikos A G. Tissue Engineering, 2006, 12: 1197-1211
[17] Barnes C P, Sell S A, Boland E D, Simpson D G, Bowlin G L. Advanced Drug Delivery Reviews, 2007, 59: 1413-1433
[18] 马列(Ma L). 浙江大学博士学位论文(Doctoral Dissertation of ZheJiang University), 2004
[19] Huang L, McMillan R A, Apkarian R P, Pourdeyhim B, Conticello V P, Chaikof E L. Macromolecules, 2000, 33: 2989-2997
[20] Huang L, Nagapudi K, Apkarian R P, Chaikof E L. Journal of Biomaterials Science, Polymer Edition, 2001, 12: 979-993
[21] Li W J, Laurencin C T, Caterson E J, Tuan R S, Ko F K. Journal of Biomedical Materials Research Part A, 2002, 60: 613-621
[22] Yoshimoto H, Shin Y M, Terai H, Vacanti J P. Biomaterials, 2003, 24: 2077-2082
[23] Renekera D H, Kataphinana W, Theronb A, Zussman E, Yarin A L. Polymer, 2002, 43: 6785-6794
[24] Xu C Y, Inaic R, Kotakib M, Ramakrishna S. Biomaterials, 2004, 25: 877-886
[25] Yang F, Murugan R, Wang S, Ramakrishna S. Biomaterials, 2005, 26: 2603-2610
[26] Li D, Ouyang G, McCann JT, Xia Y. Nano Letters, 2005, 5: 913-916
[27] Zhang D, Chang J. Advanced Materials, 2007, 19: 3664-3667
[28] Zhang D, Chang J. Nano Letters, 2008, 8: 3283-3287
[29] Stankus J J, Guan J, Fujimoto K, Wagner W R. Biomaterials, 2006, 27: 735-744
[30] Baker B M, Gee A O, Metter R B, Nathan A S, Marklein R A, Burdick J A, Mauck R L. Biomaterials, 2008, 29: 2348-2358
[31] Yoshida H, Matsusaki M, Akashi M. Advanced Functional Materials, 2009, 19: 1001-1007
[32] Luo Y, Shoichet M S. Nature materials, 2004, 3: 249-253
[33] Ngalim S H, Magenau A, Saux G L, Gooding J J, Gaus K. Journal of Oncology, 2010, 1-7
[34] Haugh J M, Codazzi F, Teruel M, Meyer T. Journal of Cell Biology, 2000, 151: 1269-1280
[35] Kumar G, Ho C C, Co C C. Advanced Materials, 2007, 19: 1084-1090
[36] Burdick J A, Khademhosseini A, Langer R. Langmuir, 2004, 20: 5153-5156
[37] Tan H P, Wan L, Wu J D, Gao C Y. Colloids and Surfaces B: Biointerfaces, 2008, 67: 210-215
[38] Li L H, Zhu Y, Li B, Gao C Y. Langmuir, 2008, 24: 13632-13639
[39] Lo C M, Wang H B, Dembo M, Wang Y L. Biophysical Journal, 2000, 79: 144-152
[40] Wong J Y, Velasco A, Rajagopalan P, Pham Q. Langmuir, 2003, 19: 1908-1913
[41] Guo W H, Frey M T, Burnham N A, Wang Y L. Biophysical Journal, 2006, 90: 2213-2220
[42] Lo C M, Wang H B, Dembo M, Wang Y L. Biophysical Journal, 2000, 79: 144-152
[43] Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K. Nature, 1999, 400: 382-386
[44] Pelham R J, Wang Y L. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 13661-13665
[45] Phillips J E, Burns K L, Le Doux J M, Guldberg R E, Garcia A J. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 12170-12175
[46] Oh S H, Park I K, Kim J M, Lee J H. Biomaterials, 2007, 28: 1664-1671
[47] Oh S H, Kim T H, Im G I, Lee J H. Biomacromolecules, 2010, 11: 1948-1955
[48] Harley B A, Hastings A Z, Yannas I V, Sannino A. Biomaterials, 2006, 27: 866-874
[49] Wu J D, Tan H P, Li L H, Gao C Y. Chinese Science Bulletin, 2009, 54: 3174-3180
[50] Li X R, Xie J W, Lipner J, Yuan X Y, Thomopoulos S, Xia Y N. Nano Letters, 2009, 9: 2763-2768
[51] Singh M, Morris C P, Ellis R J. Tissue engineering: Part C, 2008, 14: 299-309
[52] Dormer N H, Singh M, Wang L M, Berkland C J, Detamore M S. Annals of Biomedical Engineering, 2010, 38: 2167-2182
[53] Singh M, Dormer N H, Salash J R, Christian J M, Moore D S, Berkland C, Detamore M S. Journal of Biomedical Materials Research, 2010, 94A: 870-876
[54] Kapur T A, Shoichet M S. Journal of Biomedical Materials Research Part A, 2004, 68: 235-243
[55] Chatterjee K, Gibson S L, Wallace W E, Parekh S H, Lee Y J, Cicerone M T, Young M F, Simon Jr C G. Biomaterials, 2010, 31: 5051-5062
[56] Delong S A, West J L. Biomaterials, 2005, 26: 3227-3234
[57] Wang X Q, Wenk E, Zhang X H, Meinel L, Novakovic G V, Kaplan D L. Journal of Controlled Release, 2009, 134: 81-90
[58] Vepari C P, Kaplan D L. Biotechnology and Bioengineering, 2006, 93: 1130-1137
[59] Liu C Z, Han Z W, Czernuszka J T. Acta Biomaterialia, 2009, 5: 661-669
[60] Ozkan S, Kalyon D M, Yu X J. Journal of Biomedical Materials Research Part A, 2010, 92A: 1007-1018
[61] Sherwood J K, Riley S L, Palazzolo R, Brown S C, Monkhouse D C, Coates M, Griffith L G, Landeen L K, Ratcliffe A. Biomaterials, 2002, 23: 4739-4751
[62] Singh M, Berkland C, Detamore M S. Tissue Engineering: Part B, 2008, 14: 341-366
[1] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[2] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[3] 倪秀秀, 丁鹤, 张景双, 曾周靓子, 白鹏, 郭翔海*. b轴取向MFI型分子筛膜二次生长合成策略及其应用[J]. 化学进展, 2018, 30(7): 976-988.
[4] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[5] 郭晓峰, 潘翔宇, 魏晓虎, 冯岸超*, 汤华燊*. 刺激响应梯度聚合物[J]. 化学进展, 2017, 29(10): 1184-1194.
[6] 刘雯, 张立, 杨静, 郝雪芳, 李茜, 冯亚凯. 靶向性载体/基因复合物促进内皮细胞增殖[J]. 化学进展, 2016, 28(6): 954-960.
[7] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[8] 史静, 赵国良, 滕加伟, 王仰东, 唐颐, 谢在库. MFI型沸石形貌研究[J]. 化学进展, 2014, 26(04): 545-552.
[9] 张倩, 单锋, 陆学民, 路庆华. 垂直取向介孔薄膜的制备[J]. 化学进展, 2012, 24(04): 492-500.
[10] 董焕丽, 胡文平. 共轭聚合物材料的有序化,结晶化及器件应用研究[J]. 化学进展, 2011, 23(6): 1041-1049.
[11] 郎林, 张超, 阴秀丽, 吴创之. b-轴取向MFI型分子筛膜制备工艺[J]. 化学进展, 2011, 23(5): 1022-1032.
[12] 张勇, 皮丕辉, 文秀芳, 郑大锋, 蔡智奇, 程江. 梯度接触角表面的构建与应用[J]. 化学进展, 2011, 23(12): 2457-2465.
[13] 王玮, 李博, 高长有. 生物材料表面性能调控骨髓间充质干细胞分化[J]. 化学进展, 2011, 23(10): 2160-2168.
[14] 范洪涛 隋殿鹏 陈宏 董佳 臧淑艳 孙挺. 原位被动采样技术*[J]. 化学进展, 2010, 22(08): 1672-1678.
[15] 胡小红 朱旸 高长有. 用于软骨修复的水凝胶*[J]. 化学进展, 2009, 21(10): 2164-2175.