English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2522-2533 前一篇   后一篇

• 综述与评论 •

无机中空球的分类、合成方法及应用

谢飞1*, 齐美洲1, 李文江1, 王凯1, 于振云2, 刘斌1   

  1. 1. 中国石油大学(华东)理学院 青岛 266555;
    2. 中国石油大学(华东)化学工程学院 青岛 266555
  • 收稿日期:2011-04-01 修回日期:2011-08-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:xiefei@upc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.30672017)、东营科技局科技发展计划(No.T1104002)、绍兴科技计划(No.2009A21071)和中央高校基本科研业务费专项资金(No.12CX04090A)资助

Classification, Fabrication Methods and Applications of Inorganic Hollow Spheres

Xie Fei1*, Qi Meizhou1, Li Wenjiang1, Wang Kai1, Yu Zhenyun2, Liu Bin1   

  1. 1. College of Science, China University of Petroleum, Qingdao 266555, China;
    2. College of Chemical Engineering, China University of Petroleum, Qingdao 266555, China
  • Received:2011-04-01 Revised:2011-08-01 Online:2011-12-24 Published:2011-09-29
中空球是壳层结构材料的一个重要分支。与实心球相比较,中空球具有更多特殊和优异的物理及化学性质,例如具有较小的密度、较大的比表面积以及较好的稳定性和表面渗透性,其中无机中空球较有机中空球还具有耐高温、抗老化等优点。因此,近些年来无机中空球备受人们的关注,广泛应用于催化、电池、医药等众多领域。本文结合本课题组在无机氧化物中空球领域的研究和前人的工作,总结了近5年来制备无机中空球的研究进展。将无机中空球的壳层材料分为五大类,包括:无机氧化物、硫化物及硒化物、金属单质、复合物和其他无机材料。将制备方法分成四大类:硬模板法、软模板法、牺牲模板法和无模板法,对每一大类又进一步细分,并且指出了各种方法的优缺点。同时归纳了无机中空球几个重要的应用领域,如药物、电池、气体传感器和光催化领域。最后在此基础上简要展望了无机中空球的研究前景。
Hollow sphere is an important branch of the shell structure materials. Compared with solid sphere, the hollow sphere possesses lots of unique and superior physical and chemical properties, such as lower density, higher specific surface areas, better stability and permeability. Among them, inorganic hollow spheres have unique advantages such as high temperature endurance and aging resistance compared with organic hollow spheres. Thus, inorganic hollow spheres have been attracting more attention in recent years, which have been widely applied in numerous fields such as catalysis, batteries and medicine. Based on our previous study in the field of inorganic oxide hollow spheres and the predecessors’ work, the development of fabrication of inorganic hollow spheres in the last five years is reviewed. Here, we divide the materials composing shell of hollow spherical structure into five classifications, including inorganic oxides, sulfides and selenides, metallic elementary substances, composites and other inorganic materials. Meanwhile, the fabrication methods could be grouped into four major categories involving hard template methods, soft template methods, sacrificial template methods and template-free methods, each of those major categories is further subdivided. The advantages and weaknesses of those four categories are also reviewed. Moreover, some important application fields of inorganic hollow spheres are also summarized, such as in the fields of medicine, batteries, gas sensors and photocatalysis. Furthermore, the research foreground of inorganic hollow spheres is prospected briefly. Contents 1 Introduction 2 Classifications of inorganic hollow spheres 2.1 Inorganic oxides as shell 2.2 Sulfides and selenides as shell 2.3 Metallic elementary substances as shell 2.4 Composites as shell 2.5 Other inorganic materials as shell 3 Preparation methods of inorganic hollow spheres 3.1 Hard template methods 3.2 Soft template methods 3.3 Sacrificial template methods 3.4 Template-free methods 4 Application fields of inorganic hollow spheres 4.1 Applications in the field of medicine 4.2 Applications in the field of batteries 4.3 Applications in the field of gas sensors 4.4 Applications in the field of photocatalysis 5 Prospects

中图分类号: 

()
[1] Cong H P, Yu S H. Adv. Funct. Mater., 2007, 17(11): 1814-1820
[2] Li Y S, Shi J L, Hua Z L, Chen H R, Ruan M L, Yan D S. Nano Lett., 2003, 3(5): 609-612
[3] Li X H, Li Y C, Yang C H, Li Y F. Langmuir, 2004, 20(9): 3734-3739
[4] Jia T K, Wang W M, Long F, Fu Z Y, Wang H, Zhang Q J. J. Phys. Chem. C, 2009, 113(21): 9071-9077
[5] Tang Y F, Yang L, Chen J Z, Qiu Z. Langmuir, 2010, 26(12): 10111-10114
[6] Chen Z T, Gao L. Cryst. Growth Des., 2008, 8(2): 460-464
[7] Liu L, Liu H J, Kou H Z, Wang Y Q, Zhou Z, Ren M M, Ge M, He X W. Cryst. Growth Des., 2008, 9(1): 113-117
[8] Liu J, Fan F T, Feng Z C, Zhang L, Bai S Y, Yang Q H, Li C. J. Phys. Chem. C, 2008, 112(42): 16445-16451
[9] Cui Y M, Liu L, Li B, Zhou X F, Xu N P. J. Phys. Chem. C, 2010, 114(6): 2434-2439
[10] Liu J, Hartono S B, Jin Y G, Li Z, Lu G Q M, Qiao S Z. J. Mater. Chem., 2010, 20(22): 4595-4601
[11] Cao A M, Hu J S, Liang H P, Wan L J. Angew. Chem. Int. Ed., 2005, 117(28): 4465-4469
[12] Zhang J, Wang S R, Wang Y, Xu M J, Xia H J, Zhang S M, Huang W P, Guo X Z, Wu S H. Sens. Actuators, B, 2009, 139(2): 411-417
[13] Yu H G, Yu J G, Liu S W, Mann S. Chem. Mater., 2007, 19(17): 4327-4334
[14] Melvin A, Vijay R, Chaudhari V R, Gupta B, Prakash R, Haram S, Baskar G, Khushalani D. J. Colloid Interface Sci., 2010, 346(1): 265-269
[15] Li L, Ding J, Xue J M. Chem. Mater., 2009, 21(15): 3629-3637
[16] Zou H, Wu S S, Ran Q P, Shen J. J. Phys. Chem. C, 2008, 112(31): 11623-11629
[17] Chen M, Wu L M, Zhou S X, You B. Adv. Mater., 2006, 18(6): 801-806
[18] Li G L, Shi Q, Yuan S J, Neoh K G, Kang E T, Yang X L. Chem. Mater., 2010, 22(4): 1309-1317
[19] Cundy C S, Cox P A. Chem. Rev., 2003, 103(3): 663-702
[20] Lin H P, Mou C Y, Liu S B, Tang C Y. Chem. Commun., 2001, 1970-1971
[21] Kong L D, Liu S, Yan X W, Li Q Z, He H Y. Microporous Mesoporous Mater., 2005, 81(1/3): 251-257
[22] Hua J, Han Y. Chem. Mater., 2009, 21(12): 2344-2348
[23] Shi J, Ren N, Zhang Y H, Tang Y. Microporous Mesoporous Mater., 2010, 132(1/2): 181-187
[24] Navascués N, Téllez C, Coronas J. Microporous Mesoporous Mater., 2008, 112(1/3): 561-572
[25] Naik S P, Chiang A S T, Thompson R W, Huang F C. Chem. Mater., 2003, 15(3): 787-792
[26] Gao J N, Li Q S, Zhao H B, Li L S, Liu C L, Gong Q H, Qi L M. Chem. Mater., 2008, 20(19): 6263-6269
[27] Xu H L, Wang W Z, Zhou L. Cryst. Growth Des., 2008, 8(10): 3486-3489
[28] Zhu J, Qian X F. J. Solid State Chem., 2010, 183(7): 1632-1639
[29] Wang W Z, Zhang P C, Peng L, Xie W J, Zhang G L, Tu Y, Mai W J. CrystEngComm, 2010, 12(3): 700-701
[30] Lo S S, Huang D S. Langmuir, 2010, 26(9): 6762-6766
[31] Yang M, Ma J, Zhang C L, Yang Z Z, Lu Y F. Angew. Chem. Int. Ed., 2005, 44(41): 6727-6730
[32] Yu J G, Yu X X. Environ. Sci. Technol., 2008, 42(13): 4902-4907
[33] Zhou H, Fan T X, Zhang D. Microporous Mesoporous Mater., 2007, 100(1/3): 322-327
[34] Gao S Y, Zhang H J, Wang X M, Deng R P, Sun D H, Zheng G L. J. Phys. Chem. B, 2006, 110(32): 15847-15852
[35] Lou X W, Wang Y, Yuan C L, Lee J Y, Archer L A. Adv. Mater., 2006, 18(17): 2325-2329
[36] Kim H R, Choi K I, Kim K M, Kim I D, Cao G Z, Lee J H. Chem. Commun., 2010, 5061-5063
[37] Zhao Q R, Gao Y, Bai X, Wu C Z, Xie Y. Eur. J. Inorg. Chem., 2006, 2006(8): 1643-1648
[38] Eun T H, Kim S H, Jeong W J, Jeon S J, Yang S M. Chem. Mater., 2009, 21(2): 201-203
[39] Yu J G, Liu W, Yu H G. Cryst. Growth Des., 2008, 8(3): 930-934
[40] Liu S W, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2010, 132(34): 11914-11916
[41] Li X X, Xiong Y J, Li Z Q, Xie Y. Inorg. Chem., 2006, 45(9): 3493-3495
[42] Qu X F, Yao Q Z, Zhou G T, Fu S Q, Huang J L. J. Phys. Chem. C, 2010, 114(19): 8734-8740
[43] Hu P, Yu L J, Zuo A H, Guo C Y, Yuan F L. J. Phys. Chem. C, 2008, 113(3): 900-906
[44] Peng S, Sun S H. Angew. Chem. Int. Ed., 2007, 119(22): 4233-4236
[45] Bang J H, Suslick K S. J. Am. Chem. Soc., 2007, 129(8): 2242-2243
[46] Cheng W, Tang K B, Qi Y X, Sheng J, Liu Z P. J. Mater. Chem., 2010, 20(9): 1799-1805
[47] Chernavskii P A, Pankina G V, Zaikovskii V I, Peskov N V, Afanasiev P. J. Phys. Chem. C, 2008, 112(26): 9573-9578
[48] He T, Chen D R, Jiao X L, Xu Y Y, Gu Y X. Langmuir, 2004, 20(19): 8404-8408
[49] Jia G, You H P, Liu K, Zheng Y H, Guo N, Zhang H J. Langmuir, 2009, 26(7): 5122-5128
[50] Yu D B, Sun X Q, Zou J W, Wang Z R, Wang F, Tang K. J. Phys. Chem. B, 2006, 110(43): 21667-21671
[51] Ge L, Jing X Y, Wang J, Jamil S, Liu Q, Song D L, Wang J, Xie Y, Yang P P, Zhang M L. Cryst. Growth Des., 2010, 10(4): 1688-1692
[52] Zhao P T, Huang T, Huang K X. J. Phys. Chem. C, 2007, 111(35): 12890-12897
[53] Peng Q, Dong Y J, Li Y D. Angew. Chem. Int. Ed., 2003, 42(26): 3027-3030
[54] Zhu J J, Xu S, Wang H, Zhu J M, Chen H Y. Adv. Mater., 2003, 15(2): 156-159
[55] Liu H J, Ni Y H, Han M, Liu Q, Xu Z, Hong J M, Ma X. Nanotechnology, 2005, 16(12): 2908-2912
[56] Panda S K, Chaudhuri S. J. Colloid Interface Sci., 2007, 313(1): 338-344
[57] Wolosiuk A, Armagan O, Braun P V. J. Am. Chem. Soc., 2005, 127(47): 16356-16357
[58] Hu Z S, Li L Y, Zhou X D, Fu X, Gu G H. J. Colloid Interface Sci., 2006, 294(2): 328-333
[59] Zhu Y F, Fan D H, Shen W Z. Langmuir, 2008, 24(19): 11131-11136
[60] Cheng X J, Zhao Q, Yang Y K, Tjong S C, Li R K Y. J. Mater. Sci., 2010, 45(3): 777-782
[61] Luo Y Y, Duan G T, Ye M, Zhang Y X, Li G H. J. Phys. Chem. C, 2008, 112(7): 2349-2352
[62] Liang Z J, Susha A, Caruso F. Chem. Mater., 2003, 15(16): 3176-3183
[63] Wang X, Yuan F L, Hu P, Yu L J, Bai L Y. J. Phys. Chem. C, 2008, 112(24): 8773-8778
[64] Kim S W, Kim M, Lee W Y, Hyeon T. J. Am. Chem. Soc., 2002, 124(26): 7642-7643
[65] Xia L X, Zhao H P, Liu G Y, Hu X H, Liu Y, Li J S, Yang D H, Wang X F. Colloids Surf. A, 2011, 384(1/3): 358-362
[66] Xu C W, Hu Y H, Rong J H, Jiang S P, Liu Y L. Electrochem. Commun., 2007, 9(8): 2009-2012
[67] Wang W W, Zhu Y J, Yang L X. Adv. Funct. Mater., 2007, 17(1): 59-64
[68] Wang J Z, Loh K P, Zhong Y L, Lin M, Ding J, Foo Y L. Chem. Mater., 2007, 19(10): 2566-2572
[69] Cheng J F, Pei S P, Yue B, Qian L P, He C X, Zhou Y, He H Y. Microporous Mesoporous Mater., 2008, 115(3): 383-388
[70] Jin P, Chen Q W, Hao L Q, Tian R F, Zhang L X, Wang L. J. Phys. Chem. B, 2004, 108(20): 6311-6314
[71] Song X F, Gao L. J. Phys. Chem. C, 2007, 111(23): 8180-8187
[72] Liu J, Deng Y H, Liu C, Sun Z K, Zhao D Y. J. Colloid Interface Sci., 2009, 333(1): 329-334
[73] Song X F, Gao L. Langmuir, 2007, 23(23): 11850-11856
[74] Jiang J L, Yao J F, Zeng C F, Zhang L X, Xu N P. Microporous Mesoporous Mater., 2008, 112(1/3): 450-457
[75] Cao X B, Gu L, Zhuge L J, Gao W J, Wang W C, Wu S F. Adv. Funct. Mater., 2006, 16(7): 896-902
[76] Lu W W, Gao S Y, Wang J J. J. Phys. Chem. C, 2008, 112(43): 16792-16800
[77] Chen G, Xia D G, Nie Z R, Wang Z Y, Wang L, Zhang L, Zhang J J. Chem. Mater., 2007, 19(7): 1840-1844
[78] Kong L C, Duan G T, Zuo G M, Cai W P, Cheng Z X. Mater. Chem. Phys., 2010, 123(2/3): 421-426
[79] Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Chem. Mater., 2010, 22(9): 2757-2763
[80] Wang W S, Zhen L, Xu C Y, Chen J Z, Shao W Z. ACS Appl. Mat. Interfaces, 2009, 1(4): 780-788
[81] Li J, Ni Y H, Liao K M, Hong J M. J. Colloid Interface Sci., 2009, 332(1): 231-236
[82] Ma Y W, Huo K F, Wu Q, Lu Y N, Hu Y M, Hu Z, Chen Y. J. Mater. Chem., 2006, 16(27): 2834-2838
[83] Wang W S, Zhen L, Xu C Y, Yang L, Shao W Z. J. Phys. Chem. C, 2008, 112(49): 19390-19398
[84] Wu C Z, Xie Y, Lei L Y, Hu S Q, OuYang C Z. Adv. Mater., 2006, 18(13): 1727-1732
[85] Lai L F, Huang G M, Wang X F, Weng J. Carbon, 2010, 48(11): 3145-3156
[86] Butler M F, Frith W J, Rawlins C, Weaver A C, Heppenstall-Butler M. Cryst. Growth Des., 2008, 9(1): 534-545
[87] Wang Y, Zhu Q S, Zhang H G. Chem. Commun., 2005, 5231-5233
[88] Arnal P M, Weidenthaler C, Schüth F. Chem. Mater., 2006, 18(11): 2733-2739
[89] Kim T H, Lee K H, Kwon Y K. J. Colloid Interface Sci., 2006, 304(2): 370-377
[90] Jia G, Yang M, Song Y H, You H P, Zhang H J. Cryst. Growth Des., 2008, 9(1): 301-307
[91] Miyao T, Minoshima K, Naito S. J. Mater. Chem., 2005, 15(23): 2268-2270
[92] Zhou H, Fan T X, Zhang D, Guo Q X, Ogawa H. Chem. Mater., 2007, 19(9): 2144-2146
[93] Xia L Y, Zhang M Q, Yuan C, Rong M Z. J. Mater. Chem., 2011, 21(25): 9020-9026
[94] Wang Y J, Angelatos A S, Caruso F. Chem. Mater., 2007, 20(3): 848-858
[95] Caruso F, Caruso R A, Mhwald H. Science, 1998, 282(5391): 1111-1114
[96] Huang J H, Ma R Z, Ebina Y, Fukuda K, Takada K, Sasaki T. Chem. Mater., 2010, 22(8): 2582-2587
[97] Lou X W D, Archer L A, Yang Z C. Adv. Mater., 2008, 20(21): 3987-4019
[98] Wang P, Chen D, Tang F Q. Langmuir, 2006, 22(10): 4832-4835
[99] Sun X M, Li Y D. Angew. Chem. Int. Ed., 2004, 43(29): 3827-3831
[100] Li H Q, Ha C S, Kim Ι. Langmuir, 2008, 24(19): 10552-10556
[101] Xia Y D, Mokaya R. J. Mater. Chem., 2005, 15(30): 3126-3131
[102] Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. J. Phys. Chem. B, 2004, 108(22): 7074-7079
[103] Ikeda S, Tachi K, Ng Y H, Ikoma Y, Sakata T, Mori H, Harada T, Matsumura M. Chem. Mater., 2007, 19(17): 4335-4340
[104] Wang Y, Su F B, Lee J Y, Zhao X S. Chem. Mater., 2006, 18(5): 1347-1353
[105] Knez M, Nielsch K, Niinist L. Adv. Mater., 2007, 19(21): 3425-3438
[106] Zhong Z Y, Yin Y D, Gates B, Xia Y N. Adv. Mater., 2000, 12(3): 206-209
[107] Ras R H A, Kemell M, de Wit J, Ritala M, ten Brinke G, Leskel M, Ikkala O. Adv. Mater., 2007, 19(1): 102-106
[108] Jia X H, Fan H Q, Zhang F Q, Qin L. Ultrason. Sonochem., 2010, 17(2): 284-287
[109] Buchold D H M, Feldmann C. Nano Lett., 2007, 7(11): 3489-3492
[110] Guo P, Song H H, Chen X H. J. Mater. Chem., 2010, 20(23): 4867-4874
[111] Zou H, Wu S S, Shen J. Chem. Rev., 2008, 108(9): 3893-3957
[112] Teng Z G, Han Y D, Li J, Yan F, Yang W S. Microporous Mesoporous Mater., 2010, 127(1/2): 67-72
[113] Nakashima T, Kimizuka N. J. Am. Chem. Soc., 2003, 125(21): 6386-6387
[114] Li W J, Sha X X, Dong W J, Wang Z C. Chem. Commun., 2002, 2434-2435
[115] Li W J, Coppens M O. Chem. Mater., 2005, 17(9): 2241-2246
[116] 谢飞(Xie F), 任锡玉(Ren X Y), 张春莉(Zhang C L), 齐美洲(Qi M Z), 李文江(Li W J). 分子催化(J. Mol. Catal. ), 2010, 24(2): 142-146
[117] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007, 46(9): 1489-1492
[118] Wang Y Y, Li Q, Nie M, Li X L, Li Y, Zhong X L. Nanotechnology, 2011, 22(30): 305401-305406
[119] Qi L M, Li J, Ma J M. Adv. Mater., 2002, 14(4): 300-303
[120] Zhang D B, Qi L M, Ma J M, Cheng H M. Adv. Mater., 2002, 14(20): 1499-1502
[121] Yeh Y Q, Chen B C, Lin H P, Tang C Y. Langmuir, 2006, 22(1): 6-9
[122] Wu Z C, Yu K, Zhang S D, Xie Y. J. Phys. Chem. C, 2008, 112(30): 11307-11313
[123] Cheng S, Yan D, Chen J T, Zhuo R F, Feng J J, Li H J, Feng H T, Yan P X. J. Phys. Chem. C, 2009, 113(31): 13630-13635
[124] Han Y S, Fuji M, Shchukin D, Mhwald H, Takahashi M. Cryst. Growth Des., 2009, 9(8): 3771-3775
[125] Shchukin D G, Mhwald H. Phys. Chem. Chem. Phys., 2006, 8(30): 3496-3506
[126] Wang S F, Gu F, Lü M K. Langmuir, 2006, 22(1): 398-401
[127] Fan H J, Gsele U, Zacharias M. Small, 2007, 3(10): 1660-1671
[128] Pang M L, Zeng H C. Langmuir, 2010, 26(8): 5963-5970
[129] Chiang R K, Chiang R T. Inorg. Chem., 2007, 46(2): 369-371
[130] Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304(5671): 711-714
[131] Liang H P, Zhang H M, Hu J S, Guo Y G, Wan L J, Bai C L. Angew. Chem. Int. Ed., 2004, 43(12): 1540-1543
[132] Liang H P, Wan L J, Bai C L, Jiang L. J. Phys. Chem. B, 2005, 109(16): 7795-7800
[133] Liang H P, Guo Y G, Zhang H M, Hu J S, Wan L J, Bai C L. Chem. Commun., 2004, 1496-1497
[134] Vasquez Y, Sra A K, Schaak R E. J. Am. Chem. Soc., 2005, 127(36): 12504-12505
[135] Huang C C, Hwu J R, Su W C, Shieh D B, Tzeng Y, Yeh C S. Chem. Eur. J., 2006, 12(14): 3805-3810
[136] Miao J J, Jiang L P, Liu C, Zhu J M, Zhu J J. Inorg. Chem., 2007, 46(14): 5673-5677
[137] Zhang L H, Jia G, You H P, Liu K, Yang M, Song Y H, Zheng Y H, Huang Y J, Guo N, Zhang H J. Inorg. Chem., 2010, 49(7): 3305-3309
[138] Wan S M, Guo F, Shi L, Peng Y Y, Liu X Z, Zhang Y G, Qian Y T. J. Mater. Chem., 2004, 14(16): 2489-2491
[139] Li C, Yang X G, Yang B J, Yan Y, Qian Y T. Eur. J. Inorg. Chem., 2003, 2003(19): 3534-3537
[140] Zhu H T, Wang J X, Xu G Y. Cryst. Growth Des., 2008, 9(1): 633-638
[141] Devaraju M K, Yin S, Sato T. Cryst. Growth Des., 2009, 9(6): 2944-2949
[142] Lin G F, Zheng J W, Xu R. J. Phys. Chem. C, 2008, 112(19): 7363-7370
[143] Li J, Zeng H C. J. Am. Chem. Soc., 2007, 129(51): 15839-15847
[144] Latham A H, Wilson M J, Schiffer P, Williams M E. J. Am. Chem. Soc., 2006, 128(39): 12632-12633
[145] Zhu L P, Xiao H M, Zhang W D, Yang G, Fu S Y. Cryst. Growth Des., 2008, 8(3): 957-963
[146] Herring A M, McKinnon J T, McCloskey B D, Filley J, Gneshin K W, Pavelka R A, Kleebe H J, Aldrich D J. J. Am. Chem. Soc., 2003, 125(33): 9916-9917
[147] Tartaj P, González-Carreno T, Serna C J. Adv. Mater., 2001, 13(21): 1620-1624
[148] Cao C Y, Cui Z M, Chen C Q, Song W G, Cai W. The Journal of Physical Chemistry C, 2010, 114(21): 9865-9870
[149] Botterhuis N E, Sun Q Y, Magusin P C M M, van Santen R A, Sommerdijk N A J M. Chem. Eur. J., 2006, 12(5): 1448-1456
[150] Chen J S, Luan D Y, Li C M, Boey F Y C, Qiao S Z, Lou X W. Chem. Commun., 2010, 8252-8254
[151] Jiang J H, Gao Q M, Zheng Z J, Xia K S, Hu J. Int. J. Hydrogen Energy, 2010, 35(1): 210-216
[152] Chen J F, Ding H M, Wang J X, Shao L. Biomaterials, 2004, 25(4): 723-727
[153] Zhou J, Wu W, Caruntu D, Yu M H, Martin A, Chen J F, O'Connor C J, Zhou W L. J. Phys. Chem. C, 2007, 111(47): 17473-17477
[154] Zhou W, Gao P, Shao L, Caruntu D, Yu M H, Chen J F, OConnor C J. Nanomed. Nanotechnol. Bio. Med., 2005, 1(3): 233-237
[155] Sokolova V, Epple M. Angew. Chem. Int. Ed., 2008, 47(8): 1382-1395
[156] Cai Y R, Pan H H, Xu X R, Hu Q H, Li L, Tang R K. Chem. Mater., 2007, 19(13): 3081-3083
[157] Wei W, Ma G H, Hu G, Mcleish T, Su Z G, Shen Z Y. J. Am. Chem. Soc., 2008, 130(47): 15808-15810
[158] Tarascon J M, Armand M. Nature, 2001, 414(6861): 359-367
[159] Kasavajjula U, Wang C S, Appleby A J. J. Power Sources, 2007, 163(2): 1003-1039
[160] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nature, 2000, 407(6803): 496-499
[161] Deng D, Lee J Y. Chem. Mater., 2008, 20(5): 1841-1846
[162] Lou X W, Deng D, Lee J Y, Archer L A. Chem. Mater., 2008, 20(20): 6562-6566
[163] Ma H, Cheng F Y, Chen J, Zhao J Z, Li C S, Tao Z L, Liang J. Adv. Mater., 2007, 19(22): 4067-4070
[164] Guo X W, Lu X, Fang X P, Mao Y, Wang Z X, Chen L Q, Xu X X, Yang H, Liu Y N. Electrochem. Commun., 2010, 12(6): 847-850
[165] Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nat. Mater., 2005, 4(5): 366-377
[166] Kim H, Cho J. Chem. Mater., 2008, 20(5): 1679-1681
[167] Lou X W, Li C M, Archer L A. Adv. Mater., 2009, 21(24): 2536-2539
[168] Wang X, Wu X L, Guo Y G, Zhong Y T, Cao X Q, Ma Y, Yao J N. Adv. Funct. Mater., 2010, 20(10): 1680-1686
[169] Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, Bandow S, Iijima S. Langmuir, 2008, 24(2): 547-550
[170] Koo H J, Kim Y J, Lee Y H, Lee W I, Kim K, Park N G. Adv. Mater., 2008, 20(1): 195-199
[171] Qian J F, Liu P, Xiao Y, Jiang Y, Cao Y L, Ai X P, Yang H X. Adv. Mater., 2009, 21(36): 3663-3667
[172] He C X, Lei B X, Wang Y F, Su C Y, Fang Y P, Kuang D B. Chem. Eur. J., 2010, 16(29): 8757-8761
[173] Zhang J T, Liu J F, Peng Q, Wang X, Li Y D. Chem. Mater., 2006, 18(4): 867-871
[174] Li X L, Lou T J, Sun X M, Li Y D. Inorg. Chem., 2004, 43(17): 5442-5449
[175] Kim S J, Hwang I S, Choi J K, Kang Y C, Lee J H. Sensors and Actuators B: Chemical, 2011, 155(2): 512-518
[176] Zhang H G, Zhu Q S, Zhang Y, Wang Y, Zhao L, Yu B. Adv. Funct. Mater., 2007, 17(15): 2766-2771
[177] Zhang J, Liu X H, Wu S H, Xu M J, Guo X Z, Wang S R. J. Mater. Chem., 2010, 20(31): 6453-6459
[178] Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, Li H, Lu Y F. J. Am. Chem. Soc., 2007, 129(27): 8406-8407
[179] Zeng Y, Wang X, Wang H, Dong Y, Ma Y, Yao J N. Chem. Commun., 2010, 4312-4314
[180] Lv K, Yu J G, Deng K J, Sun J, Zhao Y X, Du D Y, Li M. J. Hazard. Mater., 2010, 173(1/3): 539-543
[181] Yu J G, Zhang J. Dalton Trans., 2010, 39(25): 5860-5867
[182] Cao S W, Zhu Y J. J. Phys. Chem. C, 2008, 112(16): 6253-6257
[183] Zhang H, Zhang X, Yang X L. J. Colloid Interface Sci., 2010, 348(2): 431-440
[184] Liu Z, Sun D D, Guo P, Leckie J O. Chem. Eur. J., 2007, 13(6): 1851-1855
[185] Du X, He J H, Zhao Y Q. J. Phys. Chem. C, 2009, 113(32): 14151-14158
[186] Pan J H, Zhang X W, Du A J, Sun D D, Leckie J O. J. Am. Chem. Soc., 2008, 130(34): 11256-11257
[187] Zhou J K, Lv L, Yu J Q, Li H L, Guo P Z, Sun H, Zhao X S. J. Phys. Chem. C, 2008, 112(14): 5316-5321
[188] Wang C, Ao Y H, Wang P F, Hou J, Qian J, Zhang S H. J. Hazard. Mater., 2010, 178(1/3): 517-521
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[3] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[4] 刘宁, 刘水林, 伍素云, 付琳, 吴智, 李来丙. 金属基介孔固体碱催化剂的制备与应用[J]. 化学进展, 2020, 32(5): 536-547.
[5] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[6] 杨悦, 王珏玉, 赵敏, 崔岱宗. 病毒模板合成的金属纳米材料及应用[J]. 化学进展, 2019, 31(7): 1007-1019.
[7] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[8] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[9] 李勃天, 温幸, 唐黎明. 一维聚合物-无机纳米复合材料的制备[J]. 化学进展, 2018, 30(4): 338-348.
[10] 李里, 董健, 钱卫平*. 纳米碗阵列的制备与应用研究[J]. 化学进展, 2018, 30(2/3): 156-165.
[11] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[12] 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银*. 液滴模板法制备颗粒材料过程中介尺度结构调控的研究进展[J]. 化学进展, 2018, 30(1): 44-50.
[13] 赵旭, 王克青, 李博, 李长青, 林雨青*. 微电极制备、表面修饰及活体/单细胞电分析应用[J]. 化学进展, 2017, 29(10): 1173-1183.
[14] 赵新红, 高向平, 郝志鑫, 张晓晓. 多级孔磷酸铝分子筛的合成、表征及催化应用[J]. 化学进展, 2016, 28(5): 686-696.
[15] 王荣民, 吕思瑶, 李涛, 何玉凤, 宋鹏飞. 碳酸钙模板法制备高分子微球[J]. 化学进展, 2016, 28(1): 75-82.