English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2510-2521 前一篇   后一篇

• 综述与评论 •

无机纳米粒子的生物合成

刘闯1, 王元贵1, 耿家青1, 姜忠义2, 杨冬1*   

  1. 1. 天津大学化工学院 系统生物工程教育部重点实验室 天津 30007;
    2. 天津大学化工学院 绿色合成与转化教育部重点实验室 天津 300072
  • 收稿日期:2011-03-01 修回日期:2011-04-01 出版日期:2011-12-24 发布日期:2011-09-29

Biosynthesis of Inorganic Nanoparticles

Liu Chuang1, Wang Yuangui1, Geng Jiaqing1, Jiang Zhongyi2, Yang Dong1*   

  1. 1. Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 30007;
    2. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2011-03-01 Revised:2011-04-01 Online:2011-12-24 Published:2011-09-29
无机纳米粒子的生物合成是指利用自然界中细菌、放线菌和真菌等微生物或一些高等植物在常温、常压下合成无机纳米粒子,不需使用有毒化学原料或不产生有毒副产品。该方法不仅是一种绿色的、环境友好的新型纳米材料合成策略,而且对深入了解生物矿化机理以及从理论上指导先进功能材料的设计和合成具有重要意义,因此近年来受到了化学、材料、生物科学等领域研究者的广泛关注。本文根据纳米粒子组成,分别综述了国内外利用生物体合成金属、硫化物和氧化物等无机纳米粒子的研究进展,重点讨论了生物合成的机理。结果表明:生物合成的无机纳米粒子具有尺寸分布窄、稳定性高、生物相容性好、产率高和成本低等优点; 为了适应高金属离子浓度的外界环境,生物体往往通过吸附、还原或沉淀、累积或排出等一系列生化过程改变金属离子的溶解性和毒性,从而导致无机纳米粒子的形成; 合成无机纳米粒子后,微生物通常仍具有繁殖能力,表明这些微生物可以被用于生产无机纳米粒子的生物工厂。然而,生物合成无机纳米粒子涉及到的生理过程非常复杂,微生物种类繁多,不同种类之间的差异也非常大。因此,在阐释生物合成机理、拓展纳米材料的种类和形貌、纳米粒子的后处理和应用等问题上仍需进一步深入研究。
Biosynthesis of inorganic nanoparticles is to synthesize inorganic nanoparticles at ambient temperature and pressure without utilizing hazardous agents and generating poisonous by-products by using organisms such as bacteria, actinomyces, fungi or higher plants in nature. It not only is a green and environmentally friendly protocol to synthesize inorganic nanoparticles, but also contributes to understand the biomineralization mechanism, and theoretically guides the design and synthesis of advanced functional materials. Therefore, it has recently attracted widely attention from researchers in the fields of chemistry, biology and materials science. In this review, we present the current development of inorganic nanoparticles synthesized by organisms according to material types including metals, sulphides and oxides, and the biosynthesis mechanism is particularly discussed. It indicates that biosynthesized nanoparticles have many advantages, such as narrow size distribution, high stability, good biocompatibility, high productivity and low cost, etc. In order to resist to heavy metal ions with high concentration, organisms often change their toxicity and solubility via a series of biochemical processes including bioadsorption, bioreduction or precipitation, bioaccumulation or effusion, etc., generating inorganic nanoparticles simultaneously. After the formation of inorganic nanoparticles, these organisms are still able to proliferate, indicating that they can be used to produce nanoparticles as biological factories. However, the physiological process involving in the biosynthesis of inorganic nanoparticles is intricate very much, which is also different among different organisms. Therefore, it needs further research for the elucidation of biosynthesis mechanism, extension of material type and morphology, post-treatment and application of these nanoparticles. Contents 1 Introduction 2 Metal nanoparticles 3 Metal sulphide nanoparticles 4 Metal oxide nanoparticles 5 Biosynthesis mechanism 6 Conclusions and outlook

中图分类号: 

()
[1] Kunz W, Kellermeier M. Science, 2009, 323(5912): 344-345
[2] Meldrum F C, Cölfen H. Chem. Rev., 2008, 108(11): 4332-4432
[3] 欧阳健明(Ouyang J M). 生物矿化的基质调控及其仿生应用(Regulations of Biomineralization by Matrix and Applications of Biomimetic). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2006. 188-205
[4] 史莹(Shi Y), 耿家青(Geng J Q), 杨冬(Yang D). 化学进展(Progress in Chemistry), 2010, 22(11): 2224-2231
[5] Sommerdijk N A J M, de With G. Chem. Rev., 2008, 108(11): 4499-4550
[6] De la Rica R, Matsui H. Chem. Soc. Rev., 2010, 39: 3499-3509
[7] Hildebrand M. Chem. Rev., 2008, 108: 4855-4874
[8] Gordon R, Losic D, Tiffany M A, Nagy S S, Sterrenburg F A S. Trends Biotechnol., 2009, 27: 116-127
[9] Faivre D, Schuler D. Chem. Rev., 2008, 108: 4875-4898
[10] Matsunaga T, Suzuki T, Tanaka M, Arakaki A. Trends Biotechnol., 2007, 25: 182-188
[11] Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C. Chem. Eng. Technol., 2009, 32(7): 1026-1035
[12] Korbekandi H, Iravani S, Abbasi S. Crit. Rev. Biotechnol., 2009, 29(4): 279-306
[13] Mohanpuria P, Rana N K, Yadav S K. J. Nanopart. Res., 2007, 10(3): 507-517
[14] Mandal D, Bolander M E, Mukhopadhyay D, Sarkar G, Mukherjee P. Appl. Micro. Biotechnol., 2006, 69(5): 485-492
[15] Sastry M, Ahmad A, Khan M, Kumar R. Curr. Sci., 2003, 85(2): 162-170
[16] Shankar S S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Nat. Mater., 2004, 3: 482-488
[17] Shankar S S, Rai A, Ahmad A, Sastry M. Chem. Mater., 2005, 17: 566-572
[18] Armendariz V, Herrera1 I, Peralta-Videa1 J R, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey J L. J. Nanopart. Res., 2004, 6: 377-382
[19] Parsons J G, Armendariz V, Lopez M L, Jose-Yacaman M, Gardea-Torresdey J L. J. Nanopart. Res., 2010, 12: 1579-1588
[20] Rautaray D, Ahmad A, Sastry M. J. Am. Chem. Soc., 2003, 125(48): 14656-14657
[21] Rautaray D, Sanyal A, Adyanthaya S D, Ahmad A, Sastry M. Langmuir, 2004, 20(16): 6827-6833
[22] Ahmad A, Rautaray D, Sastry M. Adv. Funct. Mater., 2004, 14(11): 1075-1080
[23] Rautaray D, Ahmad A, Sastry M. J. Mater. Chem., 2004, 14(14): 2333-2340
[24] Yong P, Rowson N, Farr J, Harris I, Macaskie L. Biotechnol. Bioeng., 2002, 80(4): 369-379
[25] Stephen J R, Macnaughton S J. Curr. Opin. Biotechnol., 1999, 10: 230-233
[26] Beveridge T J, Murray R G E. J. Bacteriol., 1980, 141: 876-887
[27] Klaus T, Joerger R, Olsson E, Granqvist C G. Proc. Natl. Acad. Sci. USA, 1999, 96(24): 13611-13614
[28] Joerger R, Klaus T, Granqvist C. Adv. Mater., 2000, 12(6): 407-409
[29] Klaus-Joerger T, Joerger R, Olsson E, Granqvist C G. Trends Biotechnol., 2001, 19: 15-20
[30] Lengke M, Fleet M, Southam G. Langmuir, 2006, 22(6): 2780-2787
[31] Wu X, Zhao F, Rahunen N, Varcoe J R, Avignone-Rossa C, Thumser A E, Slade R C T. Angew. Chem. Int. Ed., 2011, 50: 427-430
[32] Du L, Jiang H, Liu X, Wang E. Electrochem. Commun., 2007, 9: 1165-1170
[33] He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Mater. Lett., 2007, 61(18): 3984-3987
[34] Feng Y, Lin X, Wang Y, Hua J. Mater. Lett., 2008, 62(27): 4299-4302
[35] Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M, Parishcha R, Ajaykumar P, Alam M, Kumar R. Nano Lett., 2001, 1(10): 515-519
[36] Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M, Ramani R, Parischa R, Ajayakumar P, Alam M. Angew. Chem. Int. Ed., 2001, 40(19): 3585-3588
[37] Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan M, Kumar R, Sastry M. ChemBioChem, 2002, 3(5): 461-463
[38] Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M I, Kumar R, Sastry M. Colloids Surf B: Biointerfaces, 2003, 28: 313-318
[39] Riddin T L, Gericke M, Whiteley C G. Nanotechnology, 2006, 17(14): 3482-3489
[40] Senapati S, Ahmad A, Khan M I, Sastry M, Kumar R. Small, 2005, 1(5): 517-520
[41] Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan M I, Kumar R, Sastry M. J. Am. Chem. Soc., 2002, 124(41): 12108-12109
[42] Agnihotri M, Joshi S, Kumar A R, Zinjarde S, Kulkarni S. Mater. Lett., 2009, 63: 1231-1234
[43] Pimprikar P S, Joshi S S, Kumar A R, Zinjarde S S, Kulkarni S K. Colloids Surf. B: Biointerfaces, 2009, 74(1): 309-316
[44] Bhainsa K C, D’Souza S F. Colloids Surf B: Biointerfaces, 2006, 47: 160-164
[45] Ahmad A, Senapati S, Khan M, Kumar R, Sastry M. Langmuir, 2003, 19(8): 3550-3553
[46] Cui R, Liu H H, Xie H Y, Zhang Z L, Yang Y R, Pang D W, Xie Z X, Chen B B, Hu B, Shen P. Adv. Funct. Mater., 2009, 19(15): 2359-2364
[47] Ahmad A, Senapati S, Khan M, Kumar R, Ramani R, Srinivas V, Sastry M. Nanotechnology, 2003, 14: 824-828
[48] Gardea-Torresdey J L, Parsons J G, Gomez E, Peralta-Videa J, Troiani H E, Santiago P, Jose-Yacaman M. Nano Lett., 2002, 2: 397-401
[49] Gardea-Torresdey J, Gomez E, Peralta-Videa J, Parsons J, Troiani H, Jose-Yacaman M. Langmuir, 2003, 19(4): 1357-1361
[50] Sharma N, Sahi S, Nath S, Parsons J, Gardea-Torresdey J, Pal T. Environ. Sci. Technol., 2007, 41(14): 5137-5142
[51] Gardea-Torresdey J L, Rodriguez E, Parsons J G, Peralta-Videa J R, Meitzner G, Cruz-Jimenez G. Anal. Bioanal. Chem., 2005, 382(2): 347-352
[52] Haverkamp R G, Marshall A T, Agterveld D. J. Nanopart. Res., 2007, 9(4): 697-700
[53] Dameron C T, Reese R N, Mehra R K, Kortan A R, Carroll P J, Steigerwald M L, Brus L E, Winge D R. Nature, 1989, 338(6216): 596-597
[54] Williams P, Keshavarz-Moose E, Dunnill P. J. Biotech., 1996, 48: 259-267
[55] Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Biotechnol. Bioeng., 2002, 78(5): 583-588
[56] Kowshik M, Vogel W, Urban J, Kulkarni S K, Paknikar K M. Adv. Mater., 2002, 14(11): 815-818
[57] Labrenz M, Druschel G K, Thomsen-Ebert T, Gilbert B, Welch S A, Kemner K M, Logan G A, Summons R E, Stasio G D, Bond P L, Lai B, Kelly S D, Banfield J F. Science, 2000, 290(5497): 1744-1747
[58] Sweeney R Y, Mao C, Gao X, Burt J L, Belcher A M, Georgiou G, Iverson B L. Chem. Biol., 2004, 11(11): 1553-1559
[59] Chen Y L, Tuan H Y, Tien C W, Lo W H, Liang H C, Hu Y C. Biotechnol. Prog., 2009, 25(5): 1260-1266
[60] Smith P R, Holmes J D, Richardson D J, Russell D A, Sodeau J R. J. Chem. Soc. Faraday Trans., 1998, 94(9): 1235-1241
[61] Holmes J D, Richardson D J, Saed S, Evans-Gowing R, Russell D A, Sodeau J R. Microbiology, 1997, 143: 2521-2530
[62] Bai H, Zhang Z, Guo Y, Yang G. Colloids Surf. B: Biointerfaces, 2009, 70(1): 142-146
[63] Bai H, Zhang Z, Guo Y, Jia W. Nanoscale Res. Lett., 2009, 4: 717-723
[64] Bai H, Zhang Z, Yang G, Li B. Bioresour. Technol., 2008, 99: 7716-7722
[65] Bai H, Zhang Z, Gong J. Biotechnol. Lett., 2006, 28: 1135-1139
[66] Bai H, Zhang Z. Mater. Lett., 2009, 63: 764-766
[67] Bansal V, Ahmad A, Sastry M. J. Am. Chem. Soc., 2006, 128(43): 14059-14066
[68] Bansal V, Sanyal A, Rautaray D, Ahmad A, Sastry M. Adv. Mater., 2005, 17(7): 889-892
[69] Bansal V, Syed A, Bhargava S K, Ahmad A, Sastry M. Langmuir, 2007, 23(9): 4993-4998
[70] Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M. J. Mater. Chem., 2005, 15(26): 2583-2589
[71] Bansal V, Rautaray D, Ahmad A, Sastry M. J. Mater. Chem., 2004, 14(22): 3303-3305
[72] Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf S M, Sanyal M, Sastry M. Small, 2006, 2(1): 135-141
[73] Bansal V, Poddar P, Ahmad A, Sastry M. J. Am. Chem. Soc., 2006, 128(36): 11958-11963
[74] Bharde A, Wani A, Shouche Y, Joy P A, Prasad B L V, Sastry M. J. Am. Chem. Soc., 2005, 127(26): 9326-9327
[75] Bharde A A, Parikh R Y, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B L V, Shouche Y S, Ogale S, Sastry M. Langmuir, 2008, 24(11): 5787-5794
[76] Singh S, Bhatta U M, Satyam P V, Dhawan A, Sastry M, Prasad B L V. J. Mater. Chem., 2008, 18(22): 2601-2606
[77] Lengke M, Ravel B, Fleet M, Wanger G, Gordon R, Southam G. Environ. Sci. Technol., 2006, 40(20): 6304-6309
[78] Nair B, Pradeep T. Cryst. Growth Des., 2002, 2(4): 293-298
[79] Jha A K, Prasad K. Biotechnol. J., 2010, 5(3): 285-291
[80] Jha A K, Prasad K, Kulkarni A R. Colloids Surf. B: Biointerfaces, 2009, 71: 226-229
[81] Prasad K, Jha A K, Kulkarni A R. Nanoscale Res. Lett., 2007, 2: 248-250
[82] Jha A K, Prasad K. Colloids Surf. B: Biointerfaces, 2010, 75: 330-334
[83] Prasad K, Jha A K. J. Colloids Interface Sci., 2010, 342: 68-72
[84] Parikh R Y, Singh S, Prasad B L V, Patole M S, Sastry M, Shouche Y S. ChemBioChem, 2008, 9(9): 1415-1422
[1] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[2] 杨悦, 王珏玉, 赵敏, 崔岱宗. 病毒模板合成的金属纳米材料及应用[J]. 化学进展, 2019, 31(7): 1007-1019.
[3] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[4] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[5] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
[6] 高党鸽, 梁志扬, 吕斌, 马建中. 细乳液聚合法制备有机/无机纳米复合材料[J]. 化学进展, 2016, 28(7): 1076-1083.
[7] 潘宇, 历娜, 周润宏, 赵敏. 趋磁细菌纳米磁小体的研究与应用[J]. 化学进展, 2013, 25(10): 1781-1794.
[8] 王本, 唐睿康*. 生物矿化:无机化学和生物医学间的桥梁之一[J]. 化学进展, 2013, 25(04): 633-641.
[9] 欧阳健明*, 张广娜, 王凤新, 李君君. 草酸钙结石患者尿液中纳米微晶的成核、生长、聚集及其与结石形成的关系[J]. 化学进展, 2013, 25(04): 642-649.
[10] 朱顺妮, 王忠铭, 尚常花, 周卫征, 杨康, 袁振宏. 微藻脂肪合成与代谢调控[J]. 化学进展, 2011, 23(10): 2169-2176.
[11] 吴聪孟, 王小强, 赵康, 曹美文, 徐海, 吕建仁. 原子力显微镜法研究方解石(104)面的生长及溶解[J]. 化学进展, 2011, 23(01): 107-124.
[12] 欧阳健明 杨如娥 谈金. 肾上皮细胞损伤对草酸钙形成和黏附的影响*[J]. 化学进展, 2010, 22(08): 1665-1671.
[13] 吕东 杨琥 郭学锋 程镕时. 无机纳米复合水凝胶*[J]. 化学进展, 2010, 22(05): 948-952.
[14] 蔡国斌,郭晓辉,俞书宏. 聚合物控制模拟生物矿化*[J]. 化学进展, 2008, 20(0708): 1001-1014.
[15] 徐旭荣,蔡安华,刘睿,潘海华,唐睿康. 生物矿化中的无定形碳酸钙*[J]. 化学进展, 2008, 20(01): 54-59.
阅读次数
全文


摘要

无机纳米粒子的生物合成