English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2498-2509 前一篇   后一篇

• 综述与评论 •

多级复合半导体纳米材料的制备

李涛, 陈德良*   

  1. 郑州大学材料科学与工程学院 郑州 450001
  • 收稿日期:2011-04-01 修回日期:2011-08-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:dlchen@zzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.50802090)、中国博士后科学基金项目(No.20090450094,201003397)和高性能陶瓷和超微结构国家重点实验室开放基金项目(No.SKL200905SIC)资助

Synthesis of Hierarchical Semiconductor/Semiconductor Composite Nanostructures

Li Tao, Chen Deliang*   

  1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
  • Received:2011-04-01 Revised:2011-08-01 Online:2011-12-24 Published:2011-09-29
金属氧化物、Ⅲ-Ⅴ、Ⅱ-Ⅵ等半导体纳米材料由于其独特的功能性质已广泛应用于光学、电子、太阳能转化、催化等领域,是当今先进材料领域的研究前沿与热点。随着科技的发展,人们对材料的高效、多功能要求已成为必然,对半导体材料发展要求亦如此。多组分复合、多层次结构协同是实现半导体纳米材料多功能化与高效化的有效途径。构筑多级结构组合纳米半导体,不但可以调控其能带结构而提高半导体材料的光电与催化性能,而且由于多级低维纳米结构聚集时形成的空间位阻效应可以有效克服纳米晶“易团聚”难题。本文提出多级结构组合纳米晶的概念、分类,结合近年来该领域的研究实践,较系统地综述了多级复合半导体纳米结构制备的最新研究进展。首先简要介绍了多级复合半导体纳米材料的概念与典型结构; 其次对典型多级复合半导体纳米材料的制备方法进行了重点评述,分别综述了液相法、气相法以及最新发展起来的静电纺丝等方法在多级结构半导体复合纳米材料制备中的应用实践。再其次,对以具有半导体特性的石墨烯及其功能化衍生物为基体的新型多级复合半导体纳米材料的制备做了综述。最后对半导体/半导体多级结构复合纳米材料的发展方向做了展望。
Transition-metal oxides, Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductors have been widely applied in optical, electrical, solar-transfer and catalytic fields because of their unique properties. The synthesis and property control of these semiconductor nanomaterials have been one of the hot topics in advanced materials. Multifunction and high-efficiency are the basic requirements for the design of novel semiconducting materials. Multicomponents and hierarchical structures are the efficient approach to fulfill the above requirements, not only it is helpful to modulate the optic, electrical and catalytic properties by tuning the energy band structures, but also helpful to overcome the agglomeration problem via the steric effect of “house of cards” formed by anisotropic low-dimensional semiconductor nanostructures. Firstly, this paper introduces the concept and classification of hierarchical semiconductor composite nanostructures. Secondly, it reviews the synthesis of some typical hierarchical semiconductor composite nanostructures, with emphases on synthetic methods of wet-chemical, vapor growth and electrospinning processes for the construction of hierarchical semiconductor composite nanostructures. Thirdly, the newly developed hierarchical semiconductor composite nanostructures on the basis of graphene and its functional derivatives are also reviewed. Finally, the future research trends in the fields of hierarchical composite nanostructures are discussed. Contents 1 Introduction 2 Typical classifications of hierarchical semiconductor composite nanostructures 3 Synthesis of typical hierarchical semiconductor composite nanostructures 3.1 Wet-chemical methods 3.2 Vapor growth methods 3.3 Electrospinning methods 4 Synthesis of novel hierarchical semiconductor composite nanostructures based on graphene 5 Conclusions and Outlook

中图分类号: 

()
[1] Hochbaum A I, Yang P. Chem. Rev., 2010, 110: 527-546
[2] Wang R Y, Feser J P, Lee J S, Talapin D V, Segalman R, Majumdar A. Nano Lett., 2008, 8: 2283-2288
[3] Wang Z L, Song J. Science, 2006, 312: 242-246
[4] Xu C, Wang X. J. Am. Chem. Soc., 2009, 131: 5866-5872
[5] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Chem. Rev., 2010, 110: 6446-6473
[6] Liu S, Wu X, Hu B, Gong J. Cryst. Growth Des., 2009, 9: 1511-1518
[7] Chen X, Wang X, Fu X. Energy Environ. Sci., 2009, 2: 872-877
[8] Zrazhevskiy P, Sena M, Gao X. Chem. Soc. Rev., 2010, 39: 4326-4354
[9] Rogach A L, Gaponik N, Lupton J M, Bertoni C, Gallardo D E, Dunn S, Pira N L, Paderi M, Repetto P, Romanov S G, O'Dwyer C, Torres C M S, Eychmüller A. Angew. Chem. Int. Ed., 2008, 47: 6538-6549
[10] Barsan N, Koziej D, Weimar U. Sens. Actuators B, 2007, 121: 18-35
[11] Krooswyk J, Tyrakowski C. J. Phys. Chem. C, 2010, 114: 21348-21352
[12] Kuang Q, Lao C, Wang Z L, Xie Z, Zheng L. J. Am. Chem. Soc., 2007, 129: 6070-6071
[13] Hahm J I, Lieber C M. Nano Lett., 2004, 4: 51-54
[14] El-Sayed M A. Acc. Chem. Res., 2004, 37: 326-333
[15] Capasso F. Science, 1987, 235: 172-176
[16] Reiss P, Protière M, Li L. Small, 2009, 5: 154-168
[17] 夏建白(Xia J B), 朱邦芬(Zhu B F). 半导体超晶格物理(Semiconductor Superlattice Physics).上海: 上海科学技术出版社(Shanghai: Shanghai Scientific and Technical Publishers), 1995
[18] Chen D, Hou X, Wen H, Wang Y, Wang H, Li X, Zhang R, Lu H, Xu H, Guan S, Sun J, Gao L. Nanotechnology, 2010, 21: art. no. 035501
[19] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V. J. Am. Chem. Soc., 2008, 130: 4007-4015
[20] Niederberger M. Acc. Chem. Res., 2007, 40: 793-800
[21] Guo S, Wang E. Acc. Chem. Res., 2011, 44: 491-500
[22] Gardin S, Signorini R, Pistore A, Giustina G D, Brusatin G, Guglielmi M, Bozio R. J. Phys. Chem. C, 2010, 114: 7646-7652
[23] Byrappa K, Adschiri T. Prog. Cryst. Growth Ch., 2007, 53: 117-166
[24] Wang L, Wei H, Fan Y, Gu X, Zhan J. J. Phys. Chem. C, 2009, 113: 14119-14125
[25] Das K, De S K. J. Phys. Chem. C, 2009, 113: 3494-3501
[26] Niu M, Huang F, Cui L, Huang P, Yu Y, Wang Y. ACS nano, 2010, 4: 681-688
[27] Lei Y, Zhao G, Liu M, Zhang Z, Tong X, Cao T. J. Phys. Chem. C, 2009, 19067-19076
[28] Wang N, Sun C, Zhao Y, Zhou S, Chen P, Jiang L. J. Mater. Chem., 2008, 18: 3909-3911
[29] Ni Y H, Yang S, Hong J M, Zhang L, Wu W L, Yang Z S. J. Phys. Chem. C, 2008, 112: 8200-8205
[30] Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Nano Lett., 2001, 1: 207-211
[31] Van Embden J, Jasieniak J, Mulvaney P. J. Am. Chem. Soc., 2009, 131: 14299-14309
[32] Zhu H M, Song N H, Lian T Q. J. Am. Chem. Soc., 2010, 132: 15038-15045
[33] Nonoguchi Y, Nakashima T, Kawai T. Small, 2009, 5: 2403-2406
[34] Zeng Q, Kong X, Sun Y, Zhang Y, Tu L, Zhao J, Zhang H. J. Phys. Chem. C, 2008, 112: 8587-8593
[35] Nozik A J, Beard M C, Luther J M, Law M, Ellingson R J, Johnson J C. Chem. Rev., 2010, 110: 6873-6890
[36] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. J. Phys. Chem. B, 1997, 101: 9463-9475
[37] Li L, Reiss P. J. Am. Chem. Soc., 2008, 130: 11588-11589
[38] Zhu H G, Prakash A, Benoit D N, Jones C J, Colvin V L. Nanotechnology, 2010, 21: art. no. 255604
[39] Chen D A, Zhao F, Qi H, Rutherford M, Peng X G. Chem. Mater., 2010, 22: 1437-1444
[40] Dethlefsen J R, Dossing A. Nano Lett., 2011, 11: 1964-1969
[41] Acharya K P, Alabi T R, Schmall N, Hewa-Kasakarage N N, Kirsanova M, Nemchinov A, Khon E, Zamkov M. J. Phys. Chem. C, 2009, 113: 19531-19535
[42] Acharya K P, Khon E, O'Conner T, Nemitz I, Klinkova A, Khnayzer R S, Anzenbacher P, Zamkov M. ACS Nano, 2011, 5: 4953-4964
[43] Lee H, Yoon S W, Ahn J P, Suh Y D, Lee J S, Lim H, Kim D. Sol. Energ. Mater. Sol. C, 2009, 93: 779-782
[44] Zhong H, Zhou Y, Yang Y, Yang C, Li Y. J. Phys. Chem. C, 2007, 111: 6538-6543
[45] Talapin D V, Nelson J H, Shevchenko E V, Aloni S, Sadtler B, Alivisatos A P. Nano Lett., 2007, 7: 2951-2959
[46] Talapin D V. ACS Nano, 2008, 2: 1097-1100
[47] Chen Z, Moore J, Radtke G, Sirringhaus H, Brien S O. J. Am. Chem. Soc., 2007, 15702-15709
[48] Chen Z, O'Brien S. ACS nano, 2008, 2: 1219-1229
[49] Dong A, Chen J, Vora P M, Kikkawa J M, Murray C B. Nature, 2010, 466: 474-477
[50] Lopez-Quintela M A. Curr. Opin. Colloid Interface Sci., 2003, 8: 137-144
[51] Pinho S L C, Pereira G A, Voisin P, Kassem J, Bouchaud V, Etienne L, Peters J A, Carlos L D, Mornet S, Geraldes C, Rocha J, Delville M H. ACS Nano, 2010, 4: 5339-5349
[52] Jing L H, Yang C H, Qiao R R, Niu M, Du M H, Wang D Y, Gao M Y. Chem. Mater., 2010, 22: 420-427
[53] He R, You X G, Shao J, Gao F, Pan B F, Cui D X. Nanotechnology, 2007, 18: art. no. 315601
[54] Guerrero-Martinez A, Perez-Juste J, Liz-Marzan L M. Adv. Mater., 2010, 22: 1182-1195
[55] Wang Y, Niu S H, Zhang Z H, Wang H T, Yuan C W, Fu D G. Chin. J. Chem. Phys., 2007, 20: 685-689
[56] Koole R, van Schooneveld M M, Hilhorst J, de Mello Donega C, 't Hart D C, van Blaaderen A, Vanmaekelbergh D, Meijerink A. Chem. Mater., 2008, 20: 2503-2512
[57] Zeng H C. J. Mater. Chem., 2006, 16: 649-662
[58] Lin C N, Huang M H. J. Phys. Chem. C, 2009, 113: 925-929
[59] Liu B, Zeng H C. J. Phys. Chem. B, 2004, 108: 5867-5874
[60] Yu J, Yu X. Environ. Sci. Technol., 2008, 42: 4902-4907
[61] Deng Z, Chen M, Gu G, Wu L. J. Phys. Chem. B, 2008, 112: 16-22
[62] Fu Y S, Du X W, Sun J, Song Y F, Liu J. J. Phys. Chem. C, 2007, 111: 3863-3867
[63] Agrawal M, Gupta S, Pich A, Zafeiropoulos N E, Stamm M. Chem. Mater., 2009, 21: 5343-5348
[64] Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q. Nanotechnology, 2010, 21: art. no. 375201
[65] Tena-Zaera R, Katty A, Bastide S, Lévy-Clément C. Chem. Mater., 2007, 19: 1626-1632
[66] Trentler T J, Hickman K M, Goel S C, Viano A M, Gibbons P C, Buhro W E. Science, 1995, 270: 1791-1794
[67] Yu H, Buhro W E. Adv. Mater., 2003, 15: 416-419
[68] Li Z, Kurtulus Ö, Fu N, Wang Z, Kornowski A, Pietsch U, Mews A. Adv. Funct. Mater., 2009, 19: 3650-3661
[69] Qin A M, Zhou X S, Qiu Y F, Fang Y P, Su C Y, Yang S H. Adv. Mater., 2008, 20: 768-773
[70] Ouyang L, Maher K N, Yu C L, McCarty J, Park H. J. Am. Chem. Soc., 2007, 129: 133-138
[71] Chen D, Gao L, Yasumori A, Kuroda K, Sugahara Y. Small, 2008, 4: 1813-1822
[72] Wagner R, Ellis W. Appl. Phys. Lett., 1964, 4: 89-90
[73] Wacaser B A, Dick K A, Johansson J, Borgström M T, Deppert K, Samuelson L. Adv. Mater., 2009, 21: 153-165
[74] Morales A M. Science, 1998, 279: 208-211
[75] Wu Y, Cui Y, Huynh L, Barrelet C J, Bell D C, Lieber C M. Nano Lett., 2004, 4: 433-436
[76] Wu Y Y, Fan R, Yang P D. Nano Lett., 2002, 2: 83-86
[77] Wang N, Yang Y H, Chen J, Xu N, Yang G. J. Phys. Chem. C, 2010, 114: 2909-2912
[78] Pan Z W, Dai S, Rouleau C M, Lowndes D H. Angew. Chem. Int. Ed., 2005, 44: 274-278
[79] Xiang S B, Xiang X. Mater. Lett., 2007, 61: 3662-3665
[80] Gu Z J, Liu F, Howe J Y, Paranthaman M P, Pan Z W. Nanoscale, 2009, 1: 347-354
[81] Dai Z R, Pan Z W, Wang Z L. Adv. Funct. Mater., 2003, 13: 9-24
[82] Shen G, Chen P, Bando Y, Golberg D, Zhou C. Chem. Mater., 2008, 6779-6783
[83] Lin J, Huang Y, Bando Y, Tang C, Li C, Golberg D. ACS nano, 2010, 4: 2452-2458
[84] Wu X, Jiang P, Ding Y, Cai W, Xie S, Wang Z L. Adv. Mater., 2007, 19: 2319-2323
[85] Li D, Xia Y. Adv. Mater., 2004, 16: 1151-1170
[86] Choi S W, Park J Y, Kim S S. Nanotechnology, 2009, 20: art. no. 465603
[87] Zhang Z, Shao C, Li X, Zhang L, Xue H, Wang C, Liu Y. J. Phys. Chem. C, 2010, 114: 7920-7925
[88] Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y. ACS Applied Materials & Interfaces, 2010, 2: 2915-2923
[89] Ostermann R, Li D, Yin Y, McCann J. Nano Lett., 2006, 6: 1297-1302
[90] Liu Z Y, Sun D D, Guo P, Leckie J O. Nano Lett., 2007, 7: 1081-1085
[91] Novoselov K S. Angew. Chem. Int. Ed., 2011, 50: 6986-7002
[92] Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Nanoscale, 2011, 3: 86-95
[93] Ito J, Nakamura J, Natori A. J. Appl. Phys., 2008, 103: art. no. 113712
[94] Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y. ACS Nano, 2010, 4: 6425-6432
[95] Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun D D. Adv. Funct. Mater., 2010, 20: 4175-4181
[96] Zhang Y, Tang Z R, Fu X, Xu Y J. ACS Nano, 2010, 4: 7303-7314
[97] Fan W, Lai Q, Zhang Q, Wang Y. J. Phys. Chem. C, 2011, 115: 10694-10701
[98] Yang Y, Ren L, Zhang C, Huang S, Liu T. ACS Appl. Mater. Interfaces, 2011, 3: 2779-2785
[99] Lee J M, Pyun Y B, Yi J, Choung J W, Park W I. J. Phys. Chem. C, 2009, 113: 19134-19138
[100] Son J Y, Shin Y H, Kim H, Jang H M. ACS Nano, 2010, 4: 2655-2658
[101] Yang H B, Guai G H, Guo C X, Song Q L, Jiang S P, Wang Y L, Zhang W, Li C M. J. Phys. Chem. C, 2011, 115: 12209-12215
[102] Wu Z S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H M. ACS Nano, 2010, 4: 3187-3194
[103] Li B, Cao H, Shao J, Li G, Qu M, Yin G. Inorg. Chem., 2011, 50: 1628-1632
[104] He H, Gao C. ACS Appl. Mater. Interfaces, 2010, 2: 3201-3210
[105] Liang J, Xu Y, Sui D, Zhang L, Huang Y, Ma Y, Li F, Chen Y. J. Phys. Chem. C, 2010, 114: 17465-17471
[106] Su J, Cao M, Ren L, Hu C. J. Phys. Chem. C, 2011, 115: 14469-14477
[107] Zhu X, Zhu Y, Murali S, Stoller M D, Ruoff R S. ACS Nano, 2011, 5: 3333-3338
[108] Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y. Adv. Mater., 2010, 22: 103-106
[109] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angew. Chem. Int. Ed., 2010, 49: 3014-3017
[110] Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong J R. J. Am. Chem. Soc., 2011, 133: 10878-10884
[111] Li Y, Lv X, Lu J, Li J. J. Phys. Chem. C, 2010, 114: 21770-21774
[112] Meng X, Geng D, Liu J, Banis M N, Zhang Y, Li R, Sun X. J. Phys. Chem. C, 2010, 114: 18330-18337
[113] Yu K, Lu G, Mao S, Chen K, Kim H, Wen Z, Chen J. ACS Appl. Mater. Interfaces, 2011, 3: 2703-2709
[114] Zedan A F, Sappal S, Moussa S, El-Shall M S. J. Phys. Chem. C, 2010, 114: 19920-19927
[115] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80: 1339-1339
[116] Bai H, Li C, Shi G. Adv. Mater., 2011, 23: 1089-1115
[117] Chang S, Chen S. J. Phys. Chem. C, 2010, 115: 1600-1607
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[4] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[5] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[6] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[7] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[8] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[9] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[10] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[11] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[12] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[13] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[14] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[15] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
阅读次数
全文


摘要

多级复合半导体纳米材料的制备