English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2478-2488 前一篇   后一篇

• 综述与评论 •

基于DPA识别基团的锌离子荧光传感器

丁煜宾, 朱为宏, 解永树*   

  1. 上海市功能性材料化学重点实验室 华东理工大学 200237
  • 收稿日期:2011-04-01 修回日期:2011-08-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:yshxie@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21072060)、上海市教育委员会科研创新项目和高等学校博士学科点专项科研基金项目(No.20100074110015)资助

Zinc Fluorescent Sensors with Receptors Derived from DPA

Ding Yubin, Zhu Weihong, Xie Yongshu*   

  1. Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
  • Received:2011-04-01 Revised:2011-08-01 Online:2011-12-24 Published:2011-09-29
锌离子在生物体系中扮演着重要角色,其分析和检测在疾病诊断和医疗检测等方面具有重要价值。用于 Zn2+ 检测的荧光传感器具有检测方便、灵敏度高等优点,引起了广泛关注。典型的荧光传感器通常是由识别基团和作为报告单元的荧光团通过间隔基团或直接连接而组成的。识别基团是荧光传感器的作用核心,在高选择性识别过程中起着至关重要的作用。自 1996 年第一次接在荧光素上以来,DPA (N,N-二(2-吡啶甲基)胺, di-2-picolylamine) 基团在锌离子传感器的设计中得到了广泛应用。本文综述了近年来文献中报道的基于 DPA 识别基团的锌离子传感器,介绍了锌离子荧光传感器的合成方法与识别原理,最后简单介绍了锌离子传感器中其它几种常见的识别基团。
Zinc ion plays important roles in many biological systems. Its analysis and detection are highly valuable in clinical diagnosis and therapeutic monitoring. Fluoresecent zinc sensors have attracted extensive interest due to their simplicity and high sensitivity. A typical fluorescent sensor contains a receptor linked to a fluorophore directly or through a spacer, which translates the recognition event into the fluorescence signal. As the action centre of the sensor, the receptor unit plays an important role in the whole recognition process. Since its first incorporation to fluorescein in 1996, di-2-picolylamine (DPA) has been used as the most popular receptor to construct Zn2+ sensors. In this review, we briefly summarized various kinds of zinc sensors with receptors derived from DPA, and discussed the synthesis and the sensing mechanisms of the sensors. In the last part of the paper, other receptors that might be incorporated into Zn2+ sensors are also briefly introduced. Contents 1 Introduction 2 Mechanism of Zn2+ sensing 3 Di-2-picolylamine (DPA) as receptor 3.1 BODIPY as fluorophore 3.2 Quinoline and its derivatives as fluorophore 3.3 Naphthalimide as fluorophore 3.4 Anthracene as fluorophore 3.5 Cyanine dyes as fluorophore 3.6 Fluorescein as fluorophore 3.7 NBD as fluorophore 3.8 Coumarin and its derivatives as fluorophore 3.9 Other fluorophores 4 Other receptors in Zn2+ sensors 5 Summary and outlook

中图分类号: 

()
[1] Frederickson C J, Koh J Y, Bush A I. Nat. Rev. Neurosci., 2005, 6: 449-462
[2] Que E L, Domaille D W, Chang C J. Chem. Rev., 2008, 108: 1517-1549
[3] Tomat E, Lippard S J. Curr. Opin. Chem. Biol., 2010, 14: 225-230
[4] Kikuchi K, Komatsu K, Nagano T. Curr. Opin. Chem. Biol., 2004, 8: 182-191
[5] Xu Z C, Yoon J, Spring D R. Chem. Soc. Rev., 2010, 39: 1996-2006
[6] de Silva A P, McClean G D, Moody T S. Encyclopedia of Supramolecular Chemistry, 2004, 572-578
[7] de Silva A P. Chem. Soc. Rev., 1992, 187-195
[8] Valeur B, Leray I. Coord. Chem. Rev., 2000, 205: 3-40
[9] Fabbrizzi L, Licchelli M, Mancin F, Pizzeghello M, Rabaioli G, Taglietti A, Tecilla P, Tonellato U. Chem. Eur. J., 2002, 8: 94-101
[10] Li A F, He H, Ruan Y B, Wen Z C, Zhao J S, Jiang Q J, Jiang Y B. Org. Biomol. Chem., 2009, 7: 193-200
[11] Zhang X, Xiao Y, Qian X. Angew. Chem. Int. Ed., 2008, 47: 8025-8029
[12] Zhang H, Han L F, Zachariasse K A, Jiang Y B. Org. Lett., 2005, 7: 4217-4220
[13] Zhou Y, Zhu C Y, Gao X S, You X Y, Yao C. Org. Lett., 2010, 12: 2566-2569
[14] Huang X M, Guo Z Q, Zhu W H, Xie Y S, Tian H. Chem. Commun., 2008, 41: 5143-5145
[15] Lu H, Xiong L, Liu H, Yu M, Shen Z, Li F, You X. Org. Biomol. Chem., 2009, 7: 2554-2558
[16] Yu M X, Li F Y, Chen Z G, Hu H, Zhan C, Yang H, Huang C H. Anal. Chem., 2009, 81: 930-935
[17] Zhao Q, Huang C, Li F Y. Chem. Soc. Rev., 2011, 40: 2508-2524
[18] Saito S, Sasamura S, Hoshi S. Analyst, 2005, 130: 659-663
[19] Shumaker D K, Vann L R, Goldberg M W, Allen T D, Wilson K L. Cell Calcium., 1998, 23: 151-164
[20] Haugland R P. Handbook of Fluorescent Probes and Research Chemicals (Ed. Spence M T Z), 6th ed. Molecular Probes, Eugene, OR, 1996. 530-540
[21] de Silva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E. Chem. Soc. Rev., 1997, 97: 1515-1566
[22] Lim N C, Freake H C, Brückner C. Chem. Eur. J., 2005, 11: 38-49
[23] Loudet A, Burgess K. Chem. Rev., 2007, 107: 4891-4932
[24] Ulrich G, Ziessel R, Harriman A. Angew. Chem. Int. Ed., 2008, 47: 1184-1201
[25] Wu Y K, Peng X J, Guo B C, Fan J L, Zhang Z C, Wang J Y, Cui A J, Gao Y L. Org. Biomol. Chem., 2005, 3: 1387-1392
[26] Atilgan S, Ozdemir T, Akkaya E U. Org. Lett., 2008, 10: 4065-4067
[27] 张宇(Zhang Y), 郭祥峰(Guo X F), 贾丽华(Jia L H), 钱旭红(Qian X H). 化学进展(Prog. Chem.), 2008, 20: 1945-1950
[28] Wang H H, Gan Q, Wang X J, Xue L, Liu S H, Jiang H. Org. Lett., 2007, 9: 4995-4998
[29] Xue L, Wang H H, Wang X J, Jiang H. Inorg. Chem., 2008, 47: 4310-4318
[30] Du J J, Fan J L, Peng X J, Li H L, Sun S G. Sens. Actuators B, 2010, 144: 337-341
[31] Royzen M, Durandin A, Young V G, Geacintov N E, Canary J W. J. Am. Chem. Soc., 2006, 128: 3854-3855
[32] Zhang C, Zhang Y, Chen Y, Xie Z, Liu Z, Dong X, He W, Shen C, Guo Z. Inorg. Chem. Commun., 2011, 14: 304-307
[33] Wang J, Xiao Y, Zhang Z, Qian X, Yang Y, Xu Q. J. Mater. Chem., 2005, 15: 2836-2839
[34] Xu Z, Qian X, Cui J, Zhang R. Tetrahedron, 2006, 62: 10117-10122
[35] Xu Z C, Baek K H, Kim H N, Cui J N, Qian X H, Spring D R, Shin I, Yoon J. J. Am. Chem. Soc., 2010, 132: 601-610
[36] Lu X, Zhu W, Xie Y, Li X, Gao Y, Li F, Tian H. Chem. Eur. J., 2010, 16: 8355-8364
[37] de Silva S A, Zavaleta A, Baron D E, Allam O, Isidor E V, Kashimura N, Percarpio J M. Tetrahedron Lett., 1997, 38: 2237-2240
[38] Lee A E, Grace M R, Meyer A G, Tuck K L. Tetrahedron Lett., 2010, 51: 1161-1165
[39] Tang B, Huang H, Xu K, Tong L, Yang G, Liu X, An L. Chem. Commun., 2006, 3609-3611
[40] Kiyose K, Kojima H, Urano Y, Nagano T. J. Am. Chem. Soc., 2006, 128: 6548-6549
[41] Walkup G K, Burdette S C, Lippard S J, Tsien R Y. J. Am. Chem. Soc., 2000, 122: 5644-5645
[42] Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T. J. Am. Chem. Soc., 2000, 122: 12399-12400
[43] Buccella D, Horowitz J A, Lippard S J. J. Am. Chem. Soc., 2011, 133: 4101-4114
[44] Jiang W, Fu Q, Fan H, Wang W. Chem. Commun., 2008, 259-261
[45] Xu Z, Kim G H, Han S J, Jou M J, Lee C, Shin I, Yoon J. Tetrahedron, 2009, 65: 2307-2312
[46] Qian F, Zhang C, Zhang Y, He W, Gao X, Hu P, Guo Z. J. Am. Chem. Soc., 2009, 131: 1460-1468
[47] Komatsu K, Urano Y, Kojima H, Nagano T. J. Am. Chem. Soc., 2007, 129: 13447-13454
[48] Mizukami S, Okada S, Kimura S, Kikuchi K. Inorg. Chem., 2009, 48: 7630-7638
[49] Lim N C, Schuster J V, Porto M C, Tanudra M A, Yao L, Freake H C, Brückner C. Inorg. Chem., 2005, 44: 2018-2030
[50] Maruyama S, Kikuchi K, Hirano T, Urano Y, Nagano T. J. Am. Chem. Soc., 2002, 124: 10650-10651
[51] Liu Z, Zhang C, Li Y, Wu Z, Qian F, Yang X, He W, Gao X, Guo Z. Org. Lett., 2009, 11: 795-798
[52] Zhang X A, Lovejoy K S, Jasanoff A, Lippard S J. Proc. Natl. Acad. Sci. USA, 2007, 104: 10780-10785
[53] Xue L, Liu C, Jiang H. Chem. Commun., 2009, 1061-1063
[54] Chen M, Lv X, Liu Y, Zhao Y, Liu J, Wang P, Guo W. Org. Biomol. Chem., 2011, 9: 2345-2349
[55] Ding Y B, Xie Y S, Li X, Hill J P, Zhang W B, Zhu W H. Chem. Commun., 2011, 47: 5431-5433
[56] Li Z X, Yu M M, Zhang L F, Yu M, Liu J X, Wei L H, Zhang H Y. Chem. Commun., 2010, 46: 7169-7171
[57] Chang C J, Jaworski J, Nolan E M, Sheng M, Lippard S. Proc. Natl. Acad. Sci. USA, 2004, 101: 1129-1134
[58] Chen H, Gao W, Zhu M, Gao H, Xue J, Li Y. Chem. Commun., 2010, 46: 8389-8391
[59] Tomat E, Nolan E M, Jaworski J, Lippard S J. J. Am. Chem. Soc., 2008, 130: 15776-15777
[60] Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T. Angew. Chem. Int. Ed., 2003, 42: 2996-2999
[61] Hirano T, Kikuchi K, Urano Y, Nagano T. J. Am. Chem. Soc., 2002, 124: 6555-6562
[62] Hung C H, Chang G F, Kumar A, Lin G F, Luo L Y, Ching W M, Diau E W G. Chem. Commun., 2008, 978-980
[63] Ikawa Y, Takeda M, Suzuki M, Osuka A, Furuta H. Chem. Commun., 2010, 46: 5689-5691
[64] Mei Y J, Bentley P A. Bioorg. Med. Chem. Lett., 2006, 16: 3131-3134
[65] Xue L, Liu Q, Jiang H. Org. Lett., 2009, 11: 3454-3457
[66] Xue L, Liu C, Jiang H. Org. Lett., 2009, 11: 1655-1658
[1] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[2] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[3] 钟克利, 郭宝峰, 周雪, 蔡克迪, 汤立军, 金龙一. 基于芘的离子荧光化学传感器[J]. 化学进展, 2015, 27(9): 1230-1239.
[4] 鲍寅寅, 白如科*. 基于有机硅化合物的反应型氟离子荧光化学传感器[J]. 化学进展, 2013, 25(0203): 288-295.
[5] 汪凌云 曹德榕. 基于荧光共轭聚电解质的生物分子检测*[J]. 化学进展, 2010, 22(05): 905-915.
[6] 王延梅 王丽. 杯芳烃稀土配合物的光性能及应用*[J]. 化学进展, 2010, 22(0203): 427-432.
[7] 张宇,郭祥峰,贾丽华,钱旭红. 喹啉衍生物锌离子荧光传感器*[J]. 化学进展, 2008, 20(12): 1945-1950.
[8] 黄艳琴,范曲立,黄维. 水溶性共轭聚电解质*[J]. 化学进展, 2008, 20(04): 574-585.
[9] 张朝峰,杜会枝,杨频. 阿尔茨海默病分子机理的离子通道假说*[J]. 化学进展, 2006, 18(09): 1194-1199.