English
新闻公告
More
化学进展 2011, Vol. 23 Issue (12): 2417-2441 前一篇   后一篇

• 综述与评论 •

固体催化剂活性中心的分子设计及其XAFS表征

龙金林, 顾泉, 张子重, 王绪绪*   

  1. 福州大学国家环境光催化工程技术研究中心 福州 350002
  • 收稿日期:2011-04-01 修回日期:2011-05-01 出版日期:2011-12-24 发布日期:2011-09-29
  • 作者简介:e-mail:xwang@fzu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21003021)和福建省自然科学基金项目(No.2010J05024)资助

Molecular Design and XAFS Characterization of Active Centers of Solid-State Catalysts

Long Jinlin, Gu Quan, Zhang Zizhong, Wang Xuxu*   

  1. State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, China
  • Received:2011-04-01 Revised:2011-05-01 Online:2011-12-24 Published:2011-09-29
表面金属有机化学是设计制备组成和结构明确的表面金属物种的一条有效途径。同步辐射X射线吸收精细结构光谱技术(XAFS)是当前表征固体催化剂活性中心结构的有力工具。二者结合为在分子水平上设计构筑催化中心提供了一条可借鉴的分子研究途径和方法,已发展成为催化基础研究的重要方向之一。本文综述了过去十年内,我们研究组在利用表面金属有机化学方法在沸石分子筛孔道表面分子构筑单分散金属氧活性单元和XAFS在表征多相催化材料活性位结构方面取得的一些进展。简要介绍了XAFS技术的基本物理原理、实验方法、数据分析及在表征催化材料方面的优缺点,并回顾了固体表面金属有机化学的化学基础。借助表面金属有机化学的理论和方法实现了在沸石分子筛表面分子构筑“单点”单核或“单点”多核金属钛、铜和铁催化活性中心。通过对其微观结构的详细表征,并结合其催化性能的研究建立起活性与组成、结构三者之间的关联,阐明了这些金属物种化学态与其催化活性之间的本质联系。研究结果从分子层面揭示了MCM-41表面Cu 2的热解化学机制,给出了具有明确组成和微观结构的CuO、Cu2O和Cu(0)/MCM-41材料的新制备途径, 并阐明了含铜介孔分子筛催化苯酚羟基化反应中Cu活性中心的作用本质以及铁核性相关的苯酚羟化机制;基于分子构筑的、结构和组成明确的双核二铁 簇,发现并提出了铁催化HC-NO选择性催化还原反应新途径;借助X射线精细结构分析光谱技术鉴别了含铁、钛沸石分子筛光催化剂和N掺杂二氧化钛可见光催化剂的光活性物种及局域结构,提出了“表面激发光催化作用模型”新概念。
Surface organometallic chemistry (SOMC) is an effective route to design and prepare surface metal species with well-defined composition and molecular structure. Synchrotron radiation X-ray absorption fine structure spectroscopy (XAFS) technique is currently a powerful tool to characterize geometrical structure of active sites of solid-state catalysts. Their combination provided a method to design and construct in molecular level catalytic active centres, which was established to be one of the important goals in the field of heterogeneous catalysis. This article reviews the recent advancements in construction of single-site active metallic centre in the channels and cages of zeolite molecular sieves by the SOMC method and in characterizing geometrical structure of active sites of heterogeneous catalytic materials with XAFS, the physical fundament, experimental methods, and data analysis of XAFS technique and its merits and demerits in characterization of catalytic materials, the chemical fundament of SOMC. Single-site mononuclear or polynuclear Ti, Cu, and Fe active centers were successfully constructed in molecular level in the channels and cages of zeolite molecular sieves by the SOMC method. Their micro-structures were characterized in detail with XAFS combined other spectroscopic techniques and their catalytic properties were evaluated. The catalytic nature of these metallic centers was elucidated by establishing the inherent relationship among structure, activity, and composition. The study results revealed in molecular level the pyrolysis mechanism of Cu 2 over the MCM-41 surface, and showed a novel route to prepare CuO, Cu2O and Cu(0)/MCM-41 materials with well-defined composition and micro-structure, clarifying the hydroxylation mechanism of phenol over copper active sites and the nuclearity-dependent catalytic function of iron-oxo species; based on the binuclear diiron clusters with well-defined structure and composition constructed in molecular level by SOMC, a novel selective catalytic reduction pathway for the iron-catalyzed NO-HC reaction was proposed; a novel concept of “surface photoexcited catalysis model” for Fe, Ti contained zeolite molecular sieve photocatalysts and N-doped TiO2 visible-light photocatalyst was proposed in terms of the local structure of photoactive species identified clearly by XAFS technique. Contents 1 Introduction 2 Chemical fundament of surface organometallic chemistry 3 Basic fundament of XAFS 3.1 Physical fundament of XAFS 3.2 Data analysis of XAFS 3.3 Main experimental methods of XAFS and its merits and demerits in characterization of catalytic materials 4 Chemical construction and characterization of catalytic active centers of solid-state catalysts 4.1 Molecular construction of photoactive Ti centers on the surface of MCM-41 molecular sieves 4.2 Molecular construction of highly-dispersed copper active centers on the surface of MCM-41 molecular sieves 4.3 Spectroscopic identification of photoactive centers of HZSM-5 zeolite with trace iron impurity 4.4 Molecular construction of iron active centers confined in the supercages of HY zeolite 4.5 Brief summary on the construction of active centers with surface organometallic chemistry 4.6 Identifying the photoactive N species of N-doped TiO2 visible-iight photocatalyst with NEXAFS 5 Conclusions and outlook

中图分类号: 

()
[1] Copéret C, Chabanas M, Saint-Arroman R P, Basset J M. Angew. Chem. Int. Ed., 2003, 42: 156-181
[2] Vimont A, Thibault-Starzyk F, Daturi M. Chem. Soc. Rev., 2010, 39: 4928-4950
[3] Wachs I E, Roberts C A. Chem. Soc. Rev., 2010, 39: 5002-5017
[4] Brückner A. Chem. Soc. Rev., 2010, 39: 4673-4684
[5] Chen P, Zhou X, Shen H, Andoy N M, Choudhary E, Han K S, Liu G, Meng W. Chem. Soc. Rev., 2010, 39: 4560-4570
[6] Blasco T. Chem. Soc. Rev., 2010, 39: 4685-4702
[7] Sinfelt J H, Viag H, Lytle F W. Catal. Rev. Sci. Eng., 1984, 26: 81-140
[8] Brown M, Peierls R E, Stern E A. Phys. Rev. B, 1977, 15: 738-744
[9] Koningsberger D C, Prins R. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SESAFS, and XANES. New York: John Wiley, 1988
[10] 韦世强(Wei S Q), 孙治湖(Sun Z H), 潘志云(Pan Z Y), 闫文盛(Yan W S), 钟文杰(Zhong W J), 贺博(He B), 谢治(Xie Z), 韦正(Wei Z). 中国科学技术大学学报(Journal of University of Science and Technology of China), 2007, 37: 426-437
[11] Basset J M, Lefebvre F, Santini C. Coord. Chem. Rev., 1998, 178/180: 1703-1723
[12] Lefebvre F, Basset J M. J. Mol. Catal. A: Chem., 1999, 146(1/2): 3-12
[13] Basset J M, Candy J P, Choplin A. Perspective in Catalysis (Eds. Thomas J A, Zamaraev K I). Oxford: Blackwell Scientific Pubs., 1992. 125
[14] Ermakov Y I, Kuznetsov B N, Zakhorov V A. Stud. Surf. Sci. Catal., 1981, 8: 59-120
[15] Murrell L. Advanced Material in Catalysis (Eds. Burton J J, Garten R L). New York: Acad. Press, 1977. 235
[16] Bailey D C, Langer S H. Chem. Rev., 1981, 81: 109-148
[17] Ichikawa M. Adv. Catal., 1992, 38: 283-400
[18] Zecchina A, Arean C O. Catal. Rev. Sci. Eng., 1993, 35: 261-317
[19] Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang S G, Ichihashi Y, Park D R, Suzuki Y, Koyano K, Tatsumi T. Catal. Today, 1998, 44: 327-332
[20] Wang X, Lian W, Fu X, Basset J M, Lefebvre F. J. Catal., 2006, 238: 13-20
[21] Thangaraj A, Kumar R, Ratnasamy P. J. Catal., 1991, 131: 294-297
[22] Sun J, Meng X, Xiao F S. J. Catal., 2000, 193: 199-206
[23] Xiao F S, Sun J, Xu R. J. Catal., 2001, 199: 273-281
[24] Chen C X, Xu C H, Feng L R, Qiu F L, Suo J S. J. Mol. Catal. A: Chem., 2006, 252: 171-175
[25] Kannan S, Dubey A, Knozinger H. J. Catal., 2005, 231: 381-392
[26] Saha P K, Koner S. Inorg. Chem. Commun., 2004, 7: 1164-1166
[27] Seelan S, Sinha A K. Appl. Catal. A: Gen., 2003, 238: 201-209
[28] Shevade S S, Raja R, Kotasthane A N. Appl. Catal. A: Gen., 1999, 178: 243-249
[29] Qi X, Zhang L, Xie W, Ji T, Li R. Appl. Catal. A: Gen., 2004, 276: 89-94
[30] Lou L L, Liu S. Catal. Commun., 2005, 6: 762-765
[31] Wang L, Kong A, Chen B, Ding H, Shan Y, He M. J. Mol. Catal. A: Chem., 2005, 230: 143-150
[32] Wang J, Park J N, Jeong H C, Choi K S, Wei X Y, Hong S I, Lee C W. Ener. Fuels, 2004, 18: 470-476
[33] Bahranowski K, Dula R, Gsior M. Appl. Clay Sci., 2001, 18: 93-101
[34] 张国英(Zhang G Y). 福州大学博士论文(Doctoral Dissertation of Fuzhou University), 2005
[35] Zhang G, Wang X, Long J, Xie L, Ding Z, Wu L, Li Z, Fu X. Chem. Mater., 2008, 20: 4565-4575
[36] Zhang G, Long J, Wang X, Dai W, Li Z, Wu L, Fu X. New J. Chem., 2009, 33: 2044-2050
[37] Zhang G, Long J, Wang X, Zhang Z, Dai W, Liu P, Li Z, Wu L, Fu X. Langmuir, 2010, 26: 1362-1371
[38] Yan G, Wang X, Fu X, Li D. Catal. Today, 2006, 93/95: 851-856
[39] Yan G, Long J, Wang X, Li Z, Wang X, Xu Y, Fu X. J. Phys. Chem. C, 2007, 111: 5195-5202
[40] Li C. J. Catal., 2003, 216: 203-212
[41] Yan G, Long J, Wang X, Li Z, Fu X. C. R. Chieme, 2008, 11: 114-119
[42] Feng X, Hall W K. J. Catal., 1997, 166: 368-376
[43] Xin H, Liu j, Fan F, Feng Z, Jia G, Yang Q, Li C. Micropor. Mesopor. Mater., 2008, 113: 231-239
[44] Liu H, Lu G, Guo Y, Wang J. Micropor. Mesopor. Mater., 2008, 108: 56-64
[45] Tekbaş M, Yatmaz H C, Bektaş N. Micropor. Mesopor. Mater., 2008, 115: 594-602
[46] Kasiri M B, Aleboyeh H, Aleboyeh A. Appl. Catal. B: Environ., 2008, 84: 9-15
[47] Kögel M, Sandoval V H, Schwieger W, Tissler A, Turek T. Catal. Lett., 1998, 51: 23-25
[48] Pérez-Ramirez J, Kapteijn F, Mul G, Xu X, Moulijn J A. Catal. Today, 2002, 76: 55-74
[49] Kameoka S, Yuzaki K, Takeda T, Tanaka S, Ito S, Miyadera T, Kunimori K. Phys. Chem. Chem. Phys., 2001, 3: 256-260
[50] Sun Q, Gao Z X, Chen H Y, Sachtler W M H. J. Catal., 2001, 201: 88-99
[51] Long R Q, Yang R T. J. Am. Chem. Soc., 1999, 121: 5595-5596
[52] Long R Q, Yang R T. J. Catal., 2001, 201: 145-152
[53] Kharitonov A S, Aleksandrova T N, Vostrikova L A, lone K G, Panov G I. USSR 4445646, 1988
[54] Kharitonov A S, Aleksandrova T N, Panov G I, Sobolev V I, Sheveleva G A, Paukshtis E A. Kinet. Catal., 1994, 35: 270-271
[55] Lobree L J, Hwang I C, Rimer J A, Bell A T. J. Catal., 2000, 186: 242-253
[56] Marturano P, Drozdova L, Kogelbauer A. J. Catal., 2000, 192: 236-247
[57] Joyner R, Stockenhuber M. J. Phys. Chem. B, 1999, 103: 5963-5976
[58] Nozaki C, Lugmair C G, Bell A T, Tilley T D. J. Am. Chem. Soc., 2002, 124: 13194-13203
[59] Lippard S J, Berg J M. Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books, 1994. Charpter 9
[60] Panov G I, Uriarte A K, Rodkin M A, Sobolov V I. Catal. Today, 1998, 41: 365-385
[61] Wood B R, Reimer J A, Bell A T, Janicke M T, Ott K C. J. Catal., 2004, 225: 300-306
[62] Choi S H, Wood B R, Bell A T, Janicke M T, Ott K C. J. Phys. Chem. B, 2003, 107: 11843-11851
[63] Liang W Z, Bell A T, Head-Gordon M, Chakraborty A K. J. Phys. Chem. B, 2004, 108: 4362-4368
[64] Khaliullin R Z, Bell A T, Kazansky V B. J. Phys. Chem. A, 2001, 105: 10454-10461
[65] Wood B R, Reimer J A, Bell A T. J. Catal., 2004, 224: 148-155
[66] Ryder J A, Chakraborty A K, Bell A T. J. Catal., 2003, 220: 84-91
[67] Ryder J A, Chakraborty A K, Bell A T. J. Phys. Chem. B, 2002, 106: 7059-7064
[68] Rice M J, Chakraborty A K, Bell A T. J. Catal., 2000, 194: 278-285
[69] Rice M J, Chakraborty A K, Bell A T. J. Catal., 1999, 186: 222-227
[70] Fejes P, Lázár K, Marsi I, Rockenbauer A, Korecz L, Nagy J B, Perathoner S, Centi G. Appl. Catal. A: Gen., 2003, 252: 75-90
[71] Berlier G, Spoto G, Ricchiardi G. Fisicaro P, Zecchina A, Rossetti I, Selli E, Forni L, Giamello E, Lamberti C. J. Catal., 2002, 208: 64-82
[72] Battiston A A, Bitter J H, de Groot F M F, Overweg A R, Stephan O, van Bokhoven J A, Kooyman P J, van der Spek C, Vankó G, Koningsberger D C. J. Catal., 2003, 213: 251-271
[73] Moller K, Borvornwattananont A, Bein T. J. Phys. Chem., 1989, 93: 4562-4571
[74] Long J, Wang X, Ding Z, Xie L, Zhang Z, Dong J, Lin H, Fu X. J. Catal., 2008, 255: 48-58
[75] Long J, Wang X, Zhang G, Dong J, Yan T, Li Z, Fu X. Chem. Euro. J., 2007, 13; 7890-7899
[76] Iball B J, Morgan C H. Acta Cryst., 1967, 23: 239-244
[77] Churchill M R, Wormald J, Young D A T, Kaesz H D. J. Am. Chem. Soc., 1969, 91: 7201-7203
[78] Riley P E, Davis R E. Inorg. Chem., 1975, 14: 2507-2514
[79] Moriarty R M, Chen K N, Yeh C L, Flippen J L, Karle J F. J. Am. Chem. Soc., 1972, 94: 8944-8946
[80] Cotton F A, Lahuerta P. Inorg. Chem., 1975, 14: 116-119
[81] Dodge R P, Schomake R V. Acta Cryst., 1965, 18: 614-617
[82] Spoto G, Zecchina A, Bordiga S, Dante R. Mater. Chem. Phys., 1991, 29: 261-269
[83] Maschmeyer T, Rey F, Sankar G, Thomas J M. Nature, 1995, 378: 159-162
[84] Sinclair P E, Sankar G, Catlow C R A, Thomas J M, Maschmeyer T. J. Phys. Chem., 1997, 101: 4232-4237
[85] Wang X, Long J, Yan G, Zhang G, Fu X, Basset J M, Lefebvre F. Micropor. Mesopor. Mater., 2008, 108: 258-265
[86] Wilke M, Farges F, Peltit P E, Brown G E J, Martin F. Am. Mineral., 2001, 86: 714-730
[87] Choi S H, Wood B R, Bell A T, Janicke M T, Ott K C. J. Phys. Chem. B, 2004, 107: 8970-8980
[88] Long J, Wang X, Ding Z, Zhang Z, Lin H, Dai W, Fu X. J. Catal., 2009, 264: 163-174
[89] Ou C C, Lalancette R A, Potenza J A, Schugar H J. J. Am. Chem. Soc., 1978, 100: 2053-2057
[90] Thich J A, Ou C C, Powers D, Vasilion B, Mastropaolo D, Potenza J A, Schugar H J. J. Am. Chem. Soc., 1976, 98: 1425-1433
[91] Borer L, Thalken L, Ceccarelli C, Glick M, Zhang J H, Reiff W M. Inorg. Chem., 1983, 22: 1719-1724
[92] Battiston A A, Bitter J H, Heijboer W M, de Groot F M F, Koningsberg D C. J. Catal., 2003, 215: 279-293
[93] Lobree L J, Hwang I C, Reimer J A, Bell A T. J. Catal., 1999, 186: 242-253
[94] Mul G, Zandbergen M W, Kapteijn F, Moulijn J A, Pérez-Ramírez J. Catal. Lett., 2004, 93: 113-120
[95] Hall W K, Valyon J. Catal. Lett., 1992, 15: 311-315
[96] Long J, Zhang Z, Ding Z, Ruan R, Li Z, Wang X. J. Phys. Chem. C, 2010, 114: 15713-15727
[97] Nanba T, Obuchi A, Sugiura Y, Kouno C, Uchisawa J, Kushiyama S. J. Catal., 2002, 211: 53-63
[98] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269-271
[99] Zhang Z, Wang X, Long J, Gu Q, Ding Z, Fu X. J. Catal., 2010, 276: 201-214
[100] Sato S, Nakamura R, Abe S. Appl. Catal. A: Gen., 2005, 284: 131-137
[101] Diwald O, Thompson T L, Zubkov T, Goralski E G, Walck S D, Yates J T Jr. J. Phys. Chem. B, 2004, 108(19): 6004-6008
[102] Chen X, Burda C. J. Phys. Chem. B, 2004, 108 (40): 15446-15449
[103] Reyes-Garcia E A, Sun Y, Reyes-Gil K, Raftery D. J. Phys. Chem. C, 2007, 111 (6): 2738-2748
[104] Belver C, Bellod R, Fuerte A, Fernández-García M. Appl. Catal. B: Environ., 2006, 65: 301-308
[105] György E, Pérez del Pino A, Serra P, Morenza J L. Surf. Coat. Technol., 2003, 173: 265-270
[106] Valentin C D, Pacchioni G, Selloni A, Livraghi S, Giamello E. J. Phys. Chem. B, 2005, 109 (23): 11414-11419
[107] Chen J G. Surf. Sci. Rep., 1997, 30: 1-152
[108] Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107: 5483-5486
[109] Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K. Phys. Chem. Chem. Phys., 2004, 6: 865-870
[110] Thompson T L, Yates J T Jr. Top. Catal., 2005, 35: 197-210
[1] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[2] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[3] 王新之, 王红利, 石峰. 基于多相催化体系构建的醇胺化合成N-烷基胺[J]. 化学进展, 2020, 32(2/3): 162-178.
[4] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[5] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[6] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[7] 付先彪, 喻桂朋. 共价有机框架材料催化剂[J]. 化学进展, 2016, 28(7): 1006-1015.
[8] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.
[9] 李善建, 冯拉俊. 功能离子液体杂化固相纳米材料的制备及催化应用[J]. 化学进展, 2014, 26(10): 1633-1644.
[10] 郭肖, 颜雅妮, 张亚红, 唐颐. 生物质衍生糖多相催化转化[J]. 化学进展, 2013, 25(11): 1915-1927.
[11] 白赢, 彭家建, 厉嘉云, 来国桥, 李小年. 多相硅氢加成催化剂的制备及应用[J]. 化学进展, 2011, 23(12): 2466-2477.
[12] 邵燕 姚楠 卢春山 吕德义 刘化章 李小年. 用于选择性合成清洁液体燃料的钴基F-T合成催化剂*[J]. 化学进展, 2010, 22(10): 1911-1920.
[13] 王春雷,马丁,包信和. 碳纳米材料及其在多相催化中的应用[J]. 化学进展, 2009, 21(09): 1705-1721.
[14] 李新,张维萍,李秀杰,刘盛林. 多相催化剂上烯烃交叉歧化反应*[J]. 化学进展, 2008, 20(0708): 1021-1031.
[15] 张君涛,张国利,冯霄. 乙烯齐聚制α-烯烃镍系催化剂[J]. 化学进展, 2008, 20(0708): 1032-1036.