English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

热电极技术在电化学传感器中的应用

陈毅挺, 黄露, 林棋   

  1. 闽江学院化学与化学工程系 福州 350108
  • 收稿日期:2011-03-01 修回日期:2011-04-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 陈毅挺 E-mail:fjcyt@foxmail.com
  • 基金资助:

    国家自然科学基金项目(No. 20905034)、福建省青年人才创新项目(No. 2010J05029)、福建省教育厅科技项目(No. JA10222,JB09188)和福建省高校杰出青年科研人才培育计划资助

The Application of Heated Electrodes in Electrochemical Sensors

Chen Yiting, Huang Lu, Lin Qi   

  1. Department of Chemistry and Chemical Engineering, Minjiang University, Fuzhou 350108, China
  • Received:2011-03-01 Revised:2011-04-01 Online:2011-11-24 Published:2011-08-30
  • Contact: CHEN Yiting E-mail:fjcyt@foxmail.com

热电极技术是使用电流直接或间接加热微电极,通过控制施加电流的时间和大小来调节电极表面的温度。电极加热时可以只提高电极表面温度,而溶液的整体温度并不改变。由于温度对电化学反应速率、物质的扩散和对流均有影响,使用热电极技术可以减少背景噪音、提高检测的灵敏度与重现性。因此,热电极技术因其简单的加热设备、更高的检测灵敏度和更低的电极污染效应,在电化学分析领域引起了普遍关注。本文介绍了热电极技术的发展概况、工作原理、电极设计思路、电极温度的测量与控制、电极种类以及在电化学检测系统、电致化学发光检测系统、流动注射安培检测系统、毛细管电泳/芯片-电化学/电致化学发光检测系统中的相关应用。最后展望了该技术的发展趋势。

The heated electrode technology which directly or indirectly heats the electrodes by applying an electric current could regulate the temperature of the electrodes by controlling the time and strength of the applied electric current. Its obvious advantage is that the electrode temperature could be elevated rapidly while keeping the solution temperature almost unchanged. Since the temperature has effects on the electrochemical reaction rate, diffusion and convection, this kind of electrodes could reduce the background noise, improve the detection sensitivity and reproducibility. Owing to their simple heating equipment, higher detection sensitivity and lower pollution, the heated electrodes have aroused great attention in electrochemical (EC) analysis. This article briefly introduces the recent developments in heated electrodes, including their working principles, electrode design, types, measurements and controls of electrode temperature, as well as the application of heated electrodes in the electrochemical, electrochemiluminescence (ECL), flow-injection amperometric detection systems, and capillary electrophoresis (CE) and CE-chip with EC/ECL detectors. Finally, the development trends and prospects of the heated electrode technology are discussed.

Contents
1 Introduction
2 Change method of electrode temperature
3 Heated electrodes
3.1 Heating by alternating current with high frequency
3.2 Heating by direct current
3.3 Heating and sensitizing
3.4 Measurement of heated electrode temperature
3.5 Types of heated electrodes
4 Application of heated electrodes
4.1 Electrochemical analysis system based on heated electrodes
4.2 Electrochemiluminescence analysis system based on heated electrodes
4.3 Amperometric monitoring system with flow injection based on heated electrodes
4.4 Capillary electrophoresis and chip with electrochemical detector based on heated electrodes
5 Conclusions and outlook

中图分类号: 

()

[1] Gründler P, Kirbs A, Dunsch L. ChemPhyChem, 2009, 10(11): 1722-1746
[2] Wildgoose G G, Giovanelli D, Lawrence N S, Compton R G. Electroanal., 2004, 16(6): 421-433
[3] Harima Y, Aoyagui S. J. Electroanal. Chem., 1976, 69(3): 419-422
[4] Harima Y, Aoyagui S. J. Electroanal. Chem., 1977, 81(1): 47-52
[5] Ishikawa T, Okamoto G. Electrochim. Acta, 1964, 9(10): 1259-1268
[6] Gabrielli C, Keddam M, Lizee J F. J. Electroanal. Chem., 1993, 359(1/2): 1-20
[7] Valded J L, Miller B. J. Phys. Chem., 1988, 92(15): 4483-4490
[8] Crooks R M, Fan F R F, Bard A J. J. Am. Chem. Soc., 1984, 106(22): 6851-6852
[9] McDonald A J, Fan F R F, Bard A J. J. Phys. Chem., 1986, 90(1): 196-202
[10] Flarsheim W M, Tsou Y M, Trachtenberg I, Johnston K P, Bard A J. J. Phys. Chem., 1986, 90(16): 3857-3862
[11] Marken F, Matthews S L, Compton R G, Coles B A. Electroanal., 2000, 12(4): 267-273
[12] Sur U K, Marken F, Seager R, Foord J S, Chatterjee A, Coles B A, Compton R G. Electroanal., 2005, 17(5/6): 385-391
[13] Compton R G, Coles B A, Marken F. Chem. Commun., 1998, (23): 2595-2596
[14] Marken F, Tsai Y C, Coles B A, Matthews S L, Compton R G. New J. Chem., 2000, 24(9): 653-658
[15] Tsai Y C, Coles B A, Compton R G, Marken F. Electroanal., 2001, 13(8/9): 639-645
[16] Tsai Y C, Coles B A, Holt K, Foord J S, Marken F, Compton R G. Electroanal., 2001, 13(10): 831-835
[17] Valdes J L, Miller B. J. Phys. Chem., 1988, 92(2): 525-532
[18] Miller B. J. Electrochem. Soc., 1983, 130(7): 1639-1640
[19] Akkermans R P, Roberts S L, Marken F, Coles B A, Wilkins S J, Cooper J A, Woodhouse K E, Compton R G. J. Phys. Chem. B, 1999, 103(45): 9987-9995
[20] Akkermans R P, Wu M, Compton R G. Electroanal., 1998, 10(12): 814-820
[21] Akkermans R P, Suárez M F, Roberts S L, Qiu F L, Compton R G. Electroanal., 1999, 11(16): 1191-1202
[22] Ke J H, Tseng H J, Hsu C T, Chen J C, Muthuraman G, Zen J M. Sens. Actuators B, 2008, 130(2): 614-619
[23] Climent V, Coles B A, Compton R G, Feliu J M. J. Electroanal. Chem., 2004, 561(1/2): 157-165
[24] Coles B A, Moorcroft M J, Compton R G. J. Electroanal. Chem., 2001, 513(2): 87-93
[25] Moorcroft M J, Lawrence N S, Coles B A, Compton R G, Trevani L N. J. Electroanal. Chem., 2001, 506(1): 28-33
[26] Qiu F L, Compton R G, Coles B A, Marken F. J. Electroanal. Chem., 2000, 492(2): 150-155
[27] Baranski A S. Anal. Chem., 2002, 74(6): 1294-1301
[28] Gründler P. Fresenius J. Anal. Chem., 1998, 362(2): 180-183
[29] Gründler P, Zerihun T, Mller A, Kirbs A. J. Electroanal. Chem., 1993, 360(1/2): 309-314
[30] Voss T, Gründler P, Brett C M A, Brett A M O. J. Pharm. Biomed. Anal., 1999, 19(1/2): 127-133
[31] Zerihun T, Gründler P. J. Electroanal. Chem., 1996, 415(1/2): 85-88
[32] Gründler P, Flechsig G U. Electrochim. Acta, 1998, 43(23): 3451-3458
[33] Jasinski M, Kirbs A, Schmehl M, Gründler P. Electrochem. Commun., 1999, 1(1): 26-28
[34] Voβ T, Kirbs A, Gründler P. Fresenius J. Anal. Chem., 2000, 367(4): 320-323
[35] Beckmann A, Schneider A, Gründler P. Electrochem. Commun., 1999, 1(1): 46-49
[36] Voβ T, Gründler P, Kirbs A, Flechsig G U. Electrochem. Commun., 1999, 1(9): 383-388
[37] Gründler P, Zerihun T, Kirbs A, Grabow H. Anal. Chim. Acta, 1995, 305(1/3): 232-240
[38] Jacobsen M, Duwensee H, Wachholz F, Adamovski M, Flechsig G U. Electroanal., 2010, 22(13): 1483-1488
[39] Mahnke N, Markovic A, Duwensee H, Wachholz F, Flechsig G U, Rienen U V. Sens. Actuators B: Chem., 2009, 137(1): 363-369
[40] Wang J, Gründler P, Flechsig G U, Jasinski M, Lu J M, Wang J Y, Zhao Z Q, Tian B M. Anal. Chim. Acta, 1999, 396(1): 33-37
[41] Lau C, Flechsig G U, Gründler P, Wang J. Anal. Chim. Acta, 2005, 554(1/2): 74-78
[42] Aragay G, Ponsb J, Merkoci A. J. Mater. Chem., 2011, 21(12): 4326-4331
[43] Yang H, Choi C A, Chung K H, Jun C H, Kim Y T. Anal. Chem., 2004, 76(5): 1537-1543
[44] Yin Z Z, Zhang J J, Jiang L P, Zhu J J. J. Phys. Chem. C, 2009, 113(36): 16104-16109
[45] Zhong X, Qian G S, Xu J J, Chen H Y. J. Phys. Chem. C, 2010, 114(45): 19503-19508
[46] Wu D, Wu J, Zhu Y H, Xu J J, Chen H Y. Electroanal., 2010, 22(11): 1217-1222
[47] 孙建军(Sun J J), 郭亮(Guo L), 阴文辉(Yin W H), 张德风(Zhang D F), 陈国南(Chen G N). 化学传感器(Chemical Sensors), 2005, 25(2): 26-27
[48] Wei H, Sun J J, Guo L, Li X, Chen G N. Chem. Commun., 2009, (20): 2842-2844
[49] Chen Y T, Lin Z Y, Chen J H, Sun J J, Zhang L, Chen G N. J. Chromatogr. A, 2007, 1172(1): 84-91
[50] Lin Z Y, Sun J J, Chen J H, Guo L, Chen G N. Anal. Chim. Acta, 2006, 564(2): 226-230
[51] Sun J J, Guo L, Zhang D F, Yin W H, Chen G N. Electrochem. Commun., 2007, 9(2): 283-288
[52] Tseng T F, Yang Y L, Chuang M C, Lou S L, Galik M, Flechsig G U, Wang J. Electrochem. Commun., 2009, 11(9): 1819-1822
[53] Ducret L, Cornet C. J. Electroanal. Chem., 1966, 11(5): 317-339
[54] Gabrielli C, Keddam M, Lizee J F. J. Electroanal. Chem., 1983, 148(2): 293-297
[55] Gründler P. Fresenius J. Anal. Chem., 2000, 367(4): 324-328
[56] Gründler P, Kirb A, Zerihun T. Analyst, 1996, 121(12): 1805-1810
[57] Chumbimuni-Torres K Y, Thammakhet C, Galik M, Calvo-Marzal P, Wu J, Bakker E, Flechsig G U, Wang J. Anal. Chem., 2009, 81(24): 10290-10294
[58] Gründler P, Flechsig G U. Microchim. Acta, 2006, 154(3): 175-189
[59] Boika A, Baranski A S. Anal. Chem., 2008, 80(19): 7392-7400
[60] Beckmann A, Coles B A, Compton R G, Gründler P, Marken F, Neudeck A. J. Phys. Chem. B, 2000, 104(4): 764-769
[61] Gründler P, Beckmann A. Anal. Bioanal. Chem., 2004, 379(2): 261-265
[62] Gründler P, Degenring D. J. Electroanal. Chem., 2001, 512(1/2): 74-82
[63] Gründler P, Degenring D. Electroanal., 2001, 13(8/9): 755-759
[64] Wu S H, Sun J J, Zhang D F, Lin Z B, Nie F H, Qiu H Y, Chen G N. Electrochim. Acta, 2008, 53(22): 6596-6601
[65] 吴韶华(Wu S H), 张德风(Zhang D F), 聂法慧(Nie F H), 邱鹤元(Qiu H Y). 福州大学学报(自然科学版)(Journal of Fuzhou University(Natural Science Edition)), 2009, 37(1): 128-132
[66] Chen Q Z, Fang Y M, Wei H, Huang Z X, Chen G N, Sun J J. Analyst, 2010, 135(5): 1124-1130
[67] Zerihun T, Gründler P. J. Electroanal. Chem., 1996, 404(2): 243-248
[68] Chen Y T, Jiang Y Y, Lin Z Y, Sun J J, Zhang L, Chen G N. J. Nanosci. Nanotechnol., 2009, 9(4): 2303-2309
[69] Chen Y T, Jiang Y Y, Lin Z Y, Sun J J, Zhanga L, Chen G N. Analyst, 2009, 134(4): 731-737
[70] Valded J L, Miller B. J. Phys. Chem., 1989, 93(20): 7275-7280
[71] Wang J, Gründler P. Electroanal., 2003, 15(22): 1756-1761
[72] Flechsig G U, Korbut O, Gründler P. Electroanal., 2001, 13(8/9): 786-788
[73] Wang J, Gründler P. J. Electroanal. Chem., 2003, 540(2): 153-157
[74] Jasinski M, Gründler P, Flechsig G U, Wang J. Electroanal., 2001, 13(1): 34-36
[75] Adams R N. Anal. Chem., 1958, 30(9): 1576-1576
[76] Wang J, Gründler P, Flechsig G U, Jasinski M, Rivas G, Sahlin E, Paz J L L. Anal. Chem., 2000, 72(16): 3752 - 3756
[77] 伊静(Yi J). CN201302557, 2009
[78] Flechsig G U, Korbout O, Hocevar S B, Thongngamdee S, Ogorevc B, Gründler P, Wang J. Electroanal., 2002, 14(3): 192-196
[79] Chen Y T, Chen X P, Lin Z Y, Dai H, Qiu B, Sun J J, Zhang L, Chen G N. Electrochem. Commun., 2009, 11(6): 1142-1145
[80] Wu S H, Sun J J, Lin Z B, Wu A H, Zeng Y M, Guo L, Zhang D F, Dai H M, Chen G N. Electroanal., 2007, 19(21): 2251-2257
[81] Kale G M. Adv. Powder Technol., 2009, 20(5): 426-431
[82] Eckermann A L, Feld D J, Shaw J A, Meade T J. Coord. Chem. Rev., 2010, 254(15/16): 1769-1802
[83] 陈国南(Chen G N), 陈毅挺(Chen Y T), 林振宇(Lin Z Y), 姜鹰雁(Jiang Y Y), 邱彬(Qiu B). CN101162199, 2009
[84] Lin Z Y, Wang W Z, Jiang Y Y, Qiu B, Chen G N. Electrochim. Acta, 2010, 56(2): 644-648
[85] Chen Y T, Qiu B, Jiang Y Y, Lin Z Y, Sun J J, Zhang L, Chen G N. Electrochem. Commun., 2009, 11(11): 2093-2096
[86] Zerihun T, Gründler P. J. Electroanal. Chem., 1998, 441(1/2): 57-63
[87] Wachholz F, Biaa K, Piekarz M, Flechsig G U. Electrochem. Commun., 2007, 9(9): 2346-2352
[88] Wei H, Sun J J, Wang Y M, Li X, Chen G N. Analyst, 2008, 133(11): 1619-1624
[89] Wu S H, Nie F H, Chen Q Z, Sun J J. Anal. Chim. Acta, 2011, 687(1): 43-49
[90] Lau C, Reiter S, Schuhmann W, Gründler P. Anal. Bioanal. Chem., 2004, 379(2): 255-260
[91] Lau C, Borgman S, Maciejewska M, Ngounou B, Gründler P, Schuhmann W. Biosens. Bioelectron., 2007, 22(12): 3014-3020
[92] Wang J, Flechsig G U, Erdem A, Korbut O, Gründler P. Electroanal., 2004, 16(11): 928-931
[93] Flechsig G U, Peter J, Hartwich G, Wang J, Gründler P. Langmuir, 2005, 21(17): 7848-7853
[94] Peter J, Reske T, Flechsig G U. Electroanal., 2007, 19(13): 1356-1361
[95] Korbut O, Bu ková M, Tarap ík P, Labuda J, Gründler P. J. Electroanal. Chem., 2001, 506(2): 143-148
[96] Duwensee H, Vázquez-Alvarez T, Flechsig G U, Wang J. Talanta, 2009, 77(5): 1757-1760
[97] Lin Z Y, Sun J J, Chen J H, Guo L, Chen G N. Electrochim. Acta, 2007, 53(4): 1708-1712
[98] Lin Z Y, Sun J J, Chen J H, Guo L, Chen G N. Electrochem. Commun., 2007, 9(2): 269-274
[99] Lin Z Y, Sun J J, Chen J H, Guo L, Chen Y T, Chen G N. Anal. Chem., 2008, 80(8): 2826-2831
[100] Chen L C, Chi Y W, Zheng X X, Zhang Y J, Chen G N. Anal. Chem., 2009, 81(6): 2394-2398
[101] Wang J, Jasinski M, Flechsig G U, Gründler P, Tian B M. Talanta, 2000, 50(6): 1205-1210
[102] Chen Y T, Lin Z Y, Sun J J, Chen G N. Electrophoresis, 2007, 28(18): 3250-3259

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[9] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[10] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[11] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[12] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[13] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[14] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[15] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.