English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

基于Belousov-Zhabotinsky自振荡反应的智能高分子

周宏伟1,2, 梁恩湘1,2, 郑朝晖1, 丁小斌1, 彭宇行1   

  1. 1. 中国科学院成都有机化学研究所 成都 610041;
    2. 中国科学院研究生院 北京 100039
  • 收稿日期:2011-01-01 修回日期:2011-03-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 郑朝晖, 丁小斌 E-mail:xbding@cioc.ac.cn; zhzheng@cioc.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 51073161)资助

Smart Polymers Based on Belousov-Zhabotinsky Reaction

Zhou Hongwei1,2, Liang Enxiang1,2, Zheng Zhaohui1, Ding Xiaobin1, Peng Yuxing1   

  1. 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2011-01-01 Revised:2011-03-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Zheng Zhaohui, Ding Xiaobin E-mail:xbding@cioc.ac.cn; zhzheng@cioc.ac.cn

自振荡高分子是基于Belousov-Zhabotinsky自振荡反应(BZ反应)设计的一类新型智能高分子,其物理、化学性质可以在相对封闭且无外界刺激的BZ反应溶液中发生自主、可逆和循环的变化。本文从概念、设计原理、设计方法及潜在应用4个方面系统介绍了自振荡高分子,其中重点结合自振荡高分子的化学结构设计与物理结构设计介绍了这一领域的研究进展:详细归纳了目前已成功制备的具有不同化学结构或物理结构的自振荡高分子或凝胶,阐述了不同的设计方法的优点、存在的问题及可能的解决办法,最后介绍了自振荡高分子在自动运输智能表面、凝胶机器人、自主转动马达等方面的设计实例,并分析了该领域面临的问题及今后发展趋势。

Self-oscillating polymer is a new kind of smart polymers, Its chemical and physical properties exhibit autonomous, reversible and periodic changes in a relatively closed system without any external “on-off” stimuli. Belousov-Zhabotinsky reaction (BZ reaction), which is similar to the tricarboxylic acid cycle in biological systems, is coupled with self-oscillating polymer prepared via copolymerization of N-isopropylacrylamide and double bond modified Ru(bpy)3(catalyst of BZ reaction). In the presence of BZ reaction solution, the polymer undergoes spontaneous cyclic soluble-insoluble or swelling-deswelling (in the case of gel) changes induced by the redox oscillation of Ru(bpy)3. Based on the unique self-oscillating properties, self-oscillating polymers may have potential applications in the fields of automatic actuators, impulsators, micro-machines and controlled drug-release. Meanwhile, it may be a appropriate choose for simulation of autonomous phenomena and study of mechanisms of nonequilibrium phenomena in biosystems. In this paper, recent progress in self-oscillating polymer is systematically reviewed, including the conception, mechanisms, design methods and potential applications, focusing on the design of self-oscillating polymers and gels with different chemical or physical structures. Self-oscillating polymers with basic structure of poly(Ru(bpy)3-co-NIPAAm) and others containing different modifying groups,such as AMPS, MAPTAC, VP, NAS, and AA are summarized. Self-oscillating gels with phase-separation structure and microgel with ordered structure are also introduced. Performances of self-oscillating polymers and gels with different chemical or physical structures are discussed and listed. Finally, preliminary work on design of self-driven autonomous transportation surface, self-walking motion and autonomous rotational motion actuator based on self-oscillating gels are introduced. The problems of self-oscillating polymer researches and the trend in the future are analyzed.

Contents
1 Introduction
2 Mechanisms of self-oscillating polymers
2.1 Self-oscillating phenomena and BZ reaction
2.2 Mechanisms of self-oscillating polymers
3 Design methods for self-oscillating polymers
3.1 Design of chemical structures for self-oscillating polymers
3.2 Design of physical structures for self-oscillating gels
4 Potential applications of self-oscillating polymers and gels
5 Prospects

中图分类号: 

()

[1] Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. Science, 2008, 319: 1370-1374
[2] Bigot J, Charleux B, Cooke G, Delattre F, Fournier D, Lyskawa J, Sambe L, Stoffelbach F, Woisel P. J. Am. Chem. Soc., 2010, 132: 10796-10801
[3] Alf M E, Asatekin A, Barr M C, Baxamusa S H, Chelawat H, Ozaydin-Ince G, Petruczok C D, Sreenivasan R, Tenhaeff W E, Trujillo N J, Vaddiraju S, Xu J J, Gleason K K. Adv. Mater., 2010, 22: 1993-2027
[4] Liu F, Urban M W. Prog. Polym. Sci., 2010, 35: 3-23
[5] Chen T, Zhong J M, Chang D P, Carcia A, Zauscher S. Adv. Mater., 2009, 21: 1825-1829
[6] Choi J, Ruiz C R, Nesterov E E. Macromolecules, 2010, 43: 1964-1974
[7] Ruchmann J, Fouilloux S, Tribet C. Soft Matter, 2008, 4: 2098-2108
[8] Deng W, Yamaguchi H, Takashima Y, Harada A. Angew. Chem. Int. Ed., 2007, 46: 5144-5147
[9] Guiseppi-Elie A, Biomaterials. 2010, 31: 2701-2716
[10] Etika K C, Cox M A, Grunlan J C. Polymer, 2010, 51: 1761-1770
[11] Yoshida R. Adv. Mater., 2010, 22: 3463-3483
[12] Yoshida R. Adv. Sci. Technol. (Stafa-Zuerich, Switz.), 2008, 57: 1-4
[13] Murase Y, Hidaka M, Yoshida R. Sensor. Actuat. B-Chem., 2010, 149: 272-283
[14] Suzuki D, Taniguchi H, Yoshida R. J. Am. Chem. Soc., 2009, 131: 12058-12059
[15] Yoshida R. Polym. J., 2010, 42: 777-789
[16] Maeda S, Hara Y, Yoshida R, Hashimoto S. Angew. Chem. Int. Ed., 2008, 47: 6690-6693
[17] Belousov B P. Sb. Ref. Radiat. Med. Medgiz(Collections of Abstracts on Radiation Medicine, Medgiz, Moscow), 1958, 145
[18] Zhabotinsky A M. Dokl. Akad. Nauk SSSR, 1964, 157: 392-394
[19] Najar M H, Dar A A, Rather G M. Int. J. Chem. Kinet., 2010, 42: 659-668
[20] Sciascia L, Rossi F, Sbriziolo C, Liveri M L T, Varsalona R. PhysChemChemPhys, 2010, 12: 11674-11682
[21] Ito Y, Hara Y, Uetsuka H, Hasuda H, Onishi H, Arakawa H, Ikai A, Yoshida R. J. Phys. Chem. B, 2006, 110: 5170-5173
[22] Hara Y, Yoshida R. J. Chem. Phys., 2008, 128: art. no. 224904
[23] Huh D S, Park S H, Kim Y J, Park D Y, Zhao Y S, Ahn S H, Yoshida R, Yamaguchi T. J. Phys. Chem. B, 2006, 110: 13405-13409
[24] Miyakawa K, Sakamoto F, Yoshida R, Kokufuta E, Yamaguchi T. Physical Review E, 2000, 62: 793-798
[25] Yoshida R, Takei K, Yamaguchi T. Macromolecules, 2003, 36: 1759-1761
[26] Yoshida R, Yamaguchi T, Kokufuta E. Macromolecular Symposia, 2000, 160: 183-189
[27] Sakai T, Hara Y, Yoshida R. Macromol. Rapid Commun., 2005, 26: 1140-1144
[28] Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118: 5134-5135
[29] Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. Adv. Mater., 1997, 9: 175-178
[30] Hara Y, Yoshida R. J. Phys. Chem. B, 2005, 109: 9451-9454
[31] Hara Y, Yoshida R. Langmuir, 2005, 21: 9773-9776
[32] Hara Y, Yoshida R. Macromol. Chem. Phys., 2009, 210: 2160-2166
[33] Hara Y, Yoshida R. J. Phys. Chem. B, 2008, 112: 8427-8429
[34] Hara Y, Sakai T, Maeda S, Hashimoto S, Yoshida R. J. Phys. Chem. B, 2005, 109: 23316-23319
[35] Nakamaru S, Maeda S, Hara Y, Hashimoto S. J. Phys. Chem. B, 2009, 113: 4609-4613
[36] Ito Y, Nogawa M, Yoshida R. Langmuir, 2003, 19: 9577-9579
[37] Pullela S R, Shen J Y, Marquez M, Cheng Z D. J. Polym. Sci. Part B: Polym. Phys., 2009, 47: 847-854
[38] Sakai T, Yoshida R. Langmuir, 2004, 20: 1036-1038
[39] Murase Y, Maeda S, Hashimoto S, Yoshida R. Langmuir, 2009, 25: 483-489
[40] Hara Y, Maeda S, Hashimoto S, Yoshida R. Int. J. Mol. Sci., 2010, 11: 704-718
[41] Maeda S, Hara Y, Yoshida R, Hashimoto S. Macromol. Rapid Commun., 2008, 29: 401-405
[42] Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. Adv. Mater., 2007, 19: 3480-3484
[43] Maeda S, Hara Y, Yoshida R, Hashimoto S. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2008, 49: 760-761
[44] Tian E, Ma Y, Cui L, Wang J, Song Y, Jiang L. Macromol. Rapid Commun., 2009, 30: 1719-1724
[45] Shinohara S, Seki T, Sakai T, Yoshida R, Takeoka Y. Chem. Commun., 2008, 4735-4737
[46] Tateyama S, Shibuta Y, Yoshida R. J. Phys. Chem. B, 2008, 112: 1777-1782
[47] Sakamoto F, Miyakawa K. J. Phys. Soc. Jpn., 2003, 72: 2173-2176
[48] Suzuki D, Yoshida R. J. Phys. Chem. B, 2008, 112: 12618-12624
[49] Suzuki D, Yoshida R. Polym. J., 2010, 42: 501-508
[50] Taniguchi H, Suzuki D, Yoshida R. J. Phys. Chem. B, 2010, 114: 2405-2410
[51] Suzuki D, Yoshida R. Macromolecules, 2008, 41: 5830-5838
[52] Suzuki D, Sakai T, Yoshida R. Angew. Chem. Int. Ed., 2008, 47: 917-920
[53] Shen J, Pullela S, Marquez M, Cheng Z D. J. Phys. Chem. A, 2007, 111: 12081-12085
[54] Zhao F, Ding Y W, Lu Y J, Liu X X, Zhang G Z. J. Phys. Chem. B, 2009, 113: 6661-6665
[55] Howse J R, Topham P, Crook C J, Gleeson A J, Bras W, Jones R A L, Ryan A J. Nano Lett., 2006, 6: 73-77
[56] Maeda S, Hara Y, Yoshida R, Hashimoto S. Advanced Robotics, 2008, 22: 1329-1342
[57] Yoshida R, Ichijo H, Hakuta T, Yamaguchi T. Macromol. Rapid Commun., 1995, 16: 305-310
[58] Murase Y, Takeshima R, Yoshida R. Trans. Mater. Res. Soc. Jpn., 2009, 34: 171-174
[59] Maeda S, Hashimoto S, Yoshida R. Design of Chemo-Mechanical Actuator Using Self-Oscillating Gel. New York: Ieee, 2004.474-479
[60] Yoshida R. Bull. Chem. Soc. Jpn., 2008, 81: 676-688
[61] Maeda S, Hara Y, Yoshida R, Hashimoto S. A Chemo-Mechanical Rotational Actuator Driven by BZ Reaction. New York: Ieee, 2006. 308-313
[62] Takeoka Y, Watanabe M, Yoshida R. J. Am. Chem. Soc., 2003, 125: 13320-13321
[63] Maeda S, Hara Y, Yoshida R, Hashimoto S. Int. J. Mol. Sci., 2010, 11: 52-66
[64] Maeda S, Hara Y, Yoshida R, Hashimoto S. Chemical Robot-Design of Self-Walking Gel. New York: IEEE, 2007.2156-2161
[65] Tabata O, Hirasawa H, Aoki S, Yoshida R, Kokufuta E. Ciliary Motion Actuator Using Self-Oscillating Gel. Switzerland: IEEE, 2001.405-408
[66] Tabata O, Hirasawa H, Aoki S, Yoshida R, Kokufuta E. Sensors and Actuators A-Physical, 2002, 95: 234-238
[67] Yoshida R, Otoshi G, Yamaguchi T, Kokufuta E. J. Phys. Chem. A, 2001, 105: 3667-3672
[68] Tian E, Ma Y, Cui L, Wang J, Song Y, Jiang L. Macromol. Rapid Commun., 2009, 30: 1719-1724

[1] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[2] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[3] 杜海燕, 雷霞, 许玉玉, 梁镇海, 王永洪. 聚乙烯醇基聚合物材料在多元驱动方式下的形状记忆行为[J]. 化学进展, 2016, 28(11): 1648-1657.
[4] 周宏伟, 丁小斌. Belousov-Zhabotinsky反应驱动的智能高分子材料:拓扑结构及仿生功能[J]. 化学进展, 2016, 28(1): 111-120.
[5] 路兴杰, 赵跃民, 任林, 杨莹莹, 高庆宇*. 光敏性BZ反应的时空动力学[J]. 化学进展, 2012, 24(05): 709-721.
[6] 吕维华,王荣民,何玉凤,张慧芳. 智能涂料制备方法探索与应用*[J]. 化学进展, 2008, 20(0203): 351-361.
[7] 戴亚妮,李平,王爱勤. 智能高分子材料在智能给药系统中的应用*[J]. 化学进展, 2007, 19(0203): 362-369.
[8] 赵秀丽,丁小斌,郑朝晖,彭宇行,田春蓉,王建华,龙新平. 纳米金粒子/高分子复合物[J]. 化学进展, 2005, 17(05): 847-853.