English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

RAFT聚合法制备聚合物胶束及其应用前景

杨正龙, 周丹, 陈秋云   

  1. 同济大学材料科学与工程学院 先进土木工程材料教育部重点实验室 上海市特殊人工微结构材料与技术重点实验室 上海 200092
  • 收稿日期:2011-03-01 修回日期:2011-05-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 杨正龙 E-mail:yangzhenglong@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.50703029),上海市青年科技启明星计划资助(No.09QA1406300),国家环境保护公益性行业科研专项项目(No.2012467026),中央高校基本科研业务费专项基金(No.20110214)同济大学先进土木工程材料教育部重点实验室青年基金(No.2010104)和上海市金属功能材料重点实验室开放基金(No.2009106)资助

Preparation and Potential Application of Polymeric Micelles via RAFT Polymerization

Yang Zhenglong, Zhou Dan, Chen Qiuyun   

  1. School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, China
  • Received:2011-03-01 Revised:2011-05-01 Online:2011-11-24 Published:2011-08-30
  • Contact: YANG Zheng-long E-mail:yangzhenglong@tongji.edu.cn

聚合物胶束由于具有优良的组织渗透性、增容效果好、结构多样性和热稳定性等特点,成为国内外研究的热点之一。本文综述了近几年发展起来的一些具有特殊结构和特殊性能的双亲性嵌段聚合物胶束的研究进展,详细阐述了RAFT聚合法合成聚合物胶束的机理和优势,表明了RAFT聚合法可直接在水溶液中方便快捷地制备出温度和pH双响应性聚合物胶束。然而,当聚合物胶束的浓度低于其临界胶束浓度时,胶束的稀释效应大大影响了其实际应用,为提高聚合物胶束的稳定性,文章归纳总结了一系列有关壳交联聚合物胶束的制备方法及研究进展。最后,文章展望了聚合物胶束在药物可控释放、靶向、生物成像、催化剂负载及其他领域的应用前景。

The rapid progress of polymeric micelles, which due to their attractive advantages such as excellent tissue permeability, compatibilization effect, structural diversity and thermal stability, has raised interest in recent years. In this review, the research progress of amphiphilic block copolymer micelles with special structure and special properties is discussed. The formation mechanism and advantage of polymeric micelles via RAFT polymerization method are introduced. Different thermo- and pH-responsive micelles can be prepared quickly and easily in aqueous solution via RAFT polymerization method. However, dilution effect of polymer micelles greatly affect its practical application when the concentration of the polymer micelle below its critical micelle concentration. To improve the stability of polymer micelles, several methods to prepare polymeric cross-linked micelles are summarized. Finally, the current challenges for the polymeric micelles potential applications in controlled drug release, targeting, biological imaging, catalyst immobilization and other areas are highlighted.

Contents
1 Introduction
2 The RAFT polymerization mechanism
3 Methods to prepare polymeric cross-linked micelles
4 Potential applications of polymeric micelles
4.1 Polymeric micelles for controlled drug release
4.2 Polymeric micelles for drug targeting
4.3 Polymeric micelles for biological imaging
4.4 Polymeric micelles for catalyst immobilization and other area
5 Summary and outlook

中图分类号: 

()

[1] Hales M, Barner K C, Davis T P, Stenzel M H. Langmuir, 2004, 20:10809-10817
[2] McCormick C L, Sumerlin B S, Lokitz B S, Stempka J E. Soft Matter, 2008, 4:1760-1773
[3] Thurmond K B, Kowalewski T, Wooley K L. J. Am. Chem. Soc., 1996, 118:7239-7245
[4] Huang W L, Charleux B, Chiarelli R, Marx L, Rassat A, Vairon J P. Macromol. Chem. Phys., 2002, 203:1715-1723
[5] Babin J, Lepage M, Zhao Y. Macromolecules, 2008, 41:1246-1253
[6] Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31:5559-5567
[7] Moad G, Rizzardo E, Thang S H. Aust. J. Chem., 2005, 58: 379-410
[8] Convertine A J, Lokitz B S, Vasileva Y, Myrick L J, Scales C W, Lowe A B. Macromolecules, 2006, 39:1724-1730
[9] McCormick C L, Kirkland S E, York A W. J. Macromol. Sci., 2006, 46:421-443
[10] Lowe A B, Wang R, Tiriveedhi V, Butko P,McCormick C L. Macromol. Chem. Phys., 2007, 208:2339-2347
[11] Yan J J, Ji W X, Chen E Q, Li Z C, Liang D H. Macromolecules, 2008, 41:4908-4913
[12] Lai J T, Filla D, Shea R. Macromolecules, 2002, 35:6754-6756
[13] Schilli C, Lanzendrfer M G, Müller A H E. Macromolecules, 2002, 35: 6819-6827
[14] Donovan M S, Lowe A B, Sanford T A, McCormick C L. J. Polym. Sci. Part A: Polym. Chem., 2003, 41:1262-1281
[15] Scales C W, Vasilieva Y A, Convertine A J, Lowe A B, McCormick C L. Biomacromolecules, 2005, 6:1846-1850
[16] Wang R, Lowe A B. J. Polym. Sci. Part A: Polym.Chem., 2007, 45:2468-2483
[17] Assem Y, Chaffey-Millar H, Barner-Kowollik C,Wegner G, Agarwal S. Macromolecules, 2007, 40:3907-3913
[18] Sumerlin B S, Donovan M S, Mitsukam Y, Lowe A B, McCormick C L. Macromolecules, 2001, 34:6561-6564
[19] Li Y, Lokitz B S, McCormick C L. Angew. Chem. Int. Ed. Engl., 2006, 118:5924-5927
[20] Lowe A B, McCormick C L. Chem. Rev., 2002, 102: 4177-4190
[21] Li Y T, Lokitz B S, Armes S P, McCormick C L. Macromolecules, 2006, 39:2726-2728
[22] Hernandez J R, Babin J, Zappone B, Lecommandoux S. Biomacromolecules, 2005, 6: 2213-2220
[23] Liu S, Weaver J V M, Tang Y, Billingham N C, Armes S P, Tribe K. Macromolecules, 2002, 35: 6121-6131
[24] Liu S, Ma Y, Armes S P, Perruchot C, Watts J F. Langmuir, 2002,18:7780-7784
[25] Joralemon M J, O'Reilly R K, Hawker C J, Wooley K L. J. Am. Chem. Soc., 2005, 127:16892-16899
[26] Liu S Y, Weaver J V M, Save M, Armes S P. Langmuir, 2002, 18:8350-8357
[27] Li Y T, Lokitz B Z, McCormick C L. Macromolecules, 2006, 39:81-89
[28] Wei H, Chang C, Chen W Q, Cheng S X, Zhang X Z, Zhuo R X. Langmuir, 2008, 24:4564-4570
[29] Li Y T, Du J Z, Armes S P. Macromol. Rapid. Commun., 2009, 30:464-468
[30] Xu X W, Flores J D, MaCormick C L. Macromolecules, 2011, 44:1327-1334
[31] Buxton G A, Clarke N. Soft Matter, 2007, 3:1513-1517
[32] Zhang L, Bernard J, Davis T P, Stenzel M H. Biomacromolecules, 2007, 8:2890-2901
[33] Lokitz B S, York A W, Stempka J E, Treat N D, Li Y T, Jarrett W L, McCormick C L. Macromolecules, 2007, 40:6473-6480
[34] Zhu J L, Zhang X Z, Cheng H, Li Y Y, Cheng S X, Zhuo R X. J. Polym. Sci., Part A: Polym. Chem., 2007, 45: 5354-5364
[35] Li Y T, Wei H, Armes S P. Angew. Chem. Int. Ed., 2010, 49: 4042-4046
[36] Kataoka K, Harada A, Nagasaki Y. Adv. Drug Deliv. Rev., 2001, 47: 113-131
[37] Bae K H, Lee Y H, Park T G. Biomacromolecules, 2007, 8, 650-656
[38] Lee E S, Bae Y H. J. Control Release, 2003, 91: 103-113
[39] Licciardim T, Giammona G, Du J Z. Polymer, 2006, 47:2946-2955
[40] Xu S J, Luo Y, Ralph G. Bioorg. Med. Chem. Lett., 2009, 19: 1030-1034
[41] Yang H M, Park C W, Woo M A, Kim M I, Jo Y M, Park H G, Kim J D. Biomacromolecules, 2010, 11:2866-2872
[42] Du W J, Nystrm A M, Zhang L, Powell K T, Li Y T, Cheng C, Wickline S A, Wooley K L. Biomacromolecules, 2008, 9:2826-2833
[43] Peng H, Blakey I, Dargaville B, Rasoul F, Rose S, Whittaker A K. Biomacromolecules, 2009,10:374-381
[44] Müllner M, Schallon A, Walther A, Freitag R, Müller A H E. Biomacromolecules, 2010, 11:390-396
[45] Jaramillo T F, Baeck S H, Cuenya B R, McFarland E W. J. Am. Chem. Soc., 2003, 125:7148-7149
[46] Cuenya B R, Baeck S H, Jaramillo T F, McFarland E W. J. Am. Chem. Soc., 2003, 125:12928-12934
[47] Lu Y, Zhang B Y. Angew. Chem. Int. Ed., 2006, 45: 813-816
[48] Li L Y, He W D, Li J, Pan T T, Sun X L, Ding Z L. Biomacromolecules, 2010, 11:1882-1890
[49] Sugihara S, Ito S, Irie S, Ikeda I. Macromolecules, 2010, 43: 1753-1760
[50] Fujii S, Cai Y, Weaver J V M, Armes S P. J. Am. Chem. Soc., 2005, 127:7304-7305

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[13] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[14] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.
[15] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.